x को लागि हल गर्नुहोस्
x=\frac{\sqrt{97}-5}{6}\approx 0.808142967
x=\frac{-\sqrt{97}-5}{6}\approx -2.474809634
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
3x^{2}+5x+2=8
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
3x^{2}+5x+2-8=8-8
समीकरणको दुबैतिरबाट 8 घटाउनुहोस्।
3x^{2}+5x+2-8=0
8 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
3x^{2}+5x-6=0
2 बाट 8 घटाउनुहोस्।
x=\frac{-5±\sqrt{5^{2}-4\times 3\left(-6\right)}}{2\times 3}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 3 ले, b लाई 5 ले र c लाई -6 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-5±\sqrt{25-4\times 3\left(-6\right)}}{2\times 3}
5 वर्ग गर्नुहोस्।
x=\frac{-5±\sqrt{25-12\left(-6\right)}}{2\times 3}
-4 लाई 3 पटक गुणन गर्नुहोस्।
x=\frac{-5±\sqrt{25+72}}{2\times 3}
-12 लाई -6 पटक गुणन गर्नुहोस्।
x=\frac{-5±\sqrt{97}}{2\times 3}
72 मा 25 जोड्नुहोस्
x=\frac{-5±\sqrt{97}}{6}
2 लाई 3 पटक गुणन गर्नुहोस्।
x=\frac{\sqrt{97}-5}{6}
अब ± प्लस मानेर x=\frac{-5±\sqrt{97}}{6} समीकरणलाई हल गर्नुहोस्। \sqrt{97} मा -5 जोड्नुहोस्
x=\frac{-\sqrt{97}-5}{6}
अब ± माइनस मानेर x=\frac{-5±\sqrt{97}}{6} समीकरणलाई हल गर्नुहोस्। -5 बाट \sqrt{97} घटाउनुहोस्।
x=\frac{\sqrt{97}-5}{6} x=\frac{-\sqrt{97}-5}{6}
अब समिकरण समाधान भएको छ।
3x^{2}+5x+2=8
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
3x^{2}+5x+2-2=8-2
समीकरणको दुबैतिरबाट 2 घटाउनुहोस्।
3x^{2}+5x=8-2
2 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
3x^{2}+5x=6
8 बाट 2 घटाउनुहोस्।
\frac{3x^{2}+5x}{3}=\frac{6}{3}
दुबैतिर 3 ले भाग गर्नुहोस्।
x^{2}+\frac{5}{3}x=\frac{6}{3}
3 द्वारा भाग गर्नाले 3 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}+\frac{5}{3}x=2
6 लाई 3 ले भाग गर्नुहोस्।
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=2+\left(\frac{5}{6}\right)^{2}
2 द्वारा \frac{5}{6} प्राप्त गर्न x पदको गुणाङ्कलाई \frac{5}{3} ले भाग गर्नुहोस्। त्यसपछि \frac{5}{6} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+\frac{5}{3}x+\frac{25}{36}=2+\frac{25}{36}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर \frac{5}{6} लाई वर्ग गर्नुहोस्।
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{97}{36}
\frac{25}{36} मा 2 जोड्नुहोस्
\left(x+\frac{5}{6}\right)^{2}=\frac{97}{36}
कारक x^{2}+\frac{5}{3}x+\frac{25}{36}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{97}{36}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+\frac{5}{6}=\frac{\sqrt{97}}{6} x+\frac{5}{6}=-\frac{\sqrt{97}}{6}
सरल गर्नुहोस्।
x=\frac{\sqrt{97}-5}{6} x=\frac{-\sqrt{97}-5}{6}
समीकरणको दुबैतिरबाट \frac{5}{6} घटाउनुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}