भिन्नता w.r.t. x
\frac{2}{\left(x+1\right)^{2}}
मूल्याङ्कन गर्नुहोस्
\frac{2x}{x+1}
ग्राफ
प्रश्नोत्तरी
Polynomial
2x \div (x+1)
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
\frac{\left(x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1})-2x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+1)}{\left(x^{1}+1\right)^{2}}
कुनैपनि दुई भिन्न फलनहरूको लागि, दुईवटा फलनका भागफलको डेरिभेटिभ भहरको परिमाण हो, अंशको डेरिभेटिभ अंशको परिमाणको ऋणात्मक हुन्छ, हरको डेरिभेटिभलाई सबै वर्गाकार हरले भाग गरिन्छ।
\frac{\left(x^{1}+1\right)\times 2x^{1-1}-2x^{1}x^{1-1}}{\left(x^{1}+1\right)^{2}}
बहुपदीयको व्युत्पन्न भनेको यसका पदहरूको व्युत्पन्नहरूको योगफल हो। कुनैपनि अचल पदको व्युत्पन्न 0 हुन्छ। ax^{n} को व्युत्पन्न nax^{n-1} हो।
\frac{\left(x^{1}+1\right)\times 2x^{0}-2x^{1}x^{0}}{\left(x^{1}+1\right)^{2}}
हिसाब गर्नुहोस्।
\frac{x^{1}\times 2x^{0}+2x^{0}-2x^{1}x^{0}}{\left(x^{1}+1\right)^{2}}
वितरणमूलक गुण प्रयोग गर्दै विस्तार गर्नुहोस्।
\frac{2x^{1}+2x^{0}-2x^{1}}{\left(x^{1}+1\right)^{2}}
समान आधारका पावरहरूलाई गुणा गर्नको लागि, उनीहरूका घातांकहरू जोड्नुहोस्।
\frac{\left(2-2\right)x^{1}+2x^{0}}{\left(x^{1}+1\right)^{2}}
समान पदहरू संयोजन गर्नुहोस्।
\frac{2x^{0}}{\left(x^{1}+1\right)^{2}}
2 बाट 2 घटाउनुहोस्।
\frac{2x^{0}}{\left(x+1\right)^{2}}
कुनैपनि पदका लागि t, t^{1}=t।
\frac{2\times 1}{\left(x+1\right)^{2}}
0 बाहेक कुनैपनि t पदका लागि, t^{0}=1।
\frac{2}{\left(x+1\right)^{2}}
कुनैपनि t, t\times 1=t र 1t=t पदका लागि।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}