मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

y-x=-1
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट x घटाउनुहोस्।
2x-3y=-1,-x+y=-1
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x-3y=-1
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=3y-1
समीकरणको दुबैतिर 3y जोड्नुहोस्।
x=\frac{1}{2}\left(3y-1\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=\frac{3}{2}y-\frac{1}{2}
\frac{1}{2} लाई 3y-1 पटक गुणन गर्नुहोस्।
-\left(\frac{3}{2}y-\frac{1}{2}\right)+y=-1
\frac{3y-1}{2} लाई x ले अर्को समीकरण -x+y=-1 मा प्रतिस्थापन गर्नुहोस्।
-\frac{3}{2}y+\frac{1}{2}+y=-1
-1 लाई \frac{3y-1}{2} पटक गुणन गर्नुहोस्।
-\frac{1}{2}y+\frac{1}{2}=-1
y मा -\frac{3y}{2} जोड्नुहोस्
-\frac{1}{2}y=-\frac{3}{2}
समीकरणको दुबैतिरबाट \frac{1}{2} घटाउनुहोस्।
y=3
दुबैतिर -2 ले गुणन गर्नुहोस्।
x=\frac{3}{2}\times 3-\frac{1}{2}
x=\frac{3}{2}y-\frac{1}{2} मा y लाई 3 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{9-1}{2}
\frac{3}{2} लाई 3 पटक गुणन गर्नुहोस्।
x=4
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{1}{2} लाई \frac{9}{2} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=4,y=3
अब प्रणाली समाधान भएको छ।
y-x=-1
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट x घटाउनुहोस्।
2x-3y=-1,-x+y=-1
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&-3\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-1\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&-3\\-1&1\end{matrix}\right))\left(\begin{matrix}2&-3\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-1&1\end{matrix}\right))\left(\begin{matrix}-1\\-1\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&-3\\-1&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-1&1\end{matrix}\right))\left(\begin{matrix}-1\\-1\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-1&1\end{matrix}\right))\left(\begin{matrix}-1\\-1\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\left(-1\right)\right)}&-\frac{-3}{2-\left(-3\left(-1\right)\right)}\\-\frac{-1}{2-\left(-3\left(-1\right)\right)}&\frac{2}{2-\left(-3\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-1\\-1\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-3\\-1&-2\end{matrix}\right)\left(\begin{matrix}-1\\-1\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\left(-1\right)-3\left(-1\right)\\-\left(-1\right)-2\left(-1\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
हिसाब गर्नुहोस्।
x=4,y=3
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
y-x=-1
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट x घटाउनुहोस्।
2x-3y=-1,-x+y=-1
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-2x-\left(-3y\right)=-\left(-1\right),2\left(-1\right)x+2y=2\left(-1\right)
2x र -x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -1 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस्।
-2x+3y=1,-2x+2y=-2
सरल गर्नुहोस्।
-2x+2x+3y-2y=1+2
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -2x+3y=1 बाट -2x+2y=-2 घटाउनुहोस्।
3y-2y=1+2
2x मा -2x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -2x र 2x राशी रद्द हुन्छन्।
y=1+2
-2y मा 3y जोड्नुहोस्
y=3
2 मा 1 जोड्नुहोस्
-x+3=-1
-x+y=-1 मा y लाई 3 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-x=-4
समीकरणको दुबैतिरबाट 3 घटाउनुहोस्।
x=4
दुबैतिर -1 ले भाग गर्नुहोस्।
x=4,y=3
अब प्रणाली समाधान भएको छ।