मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a+b=-1 ab=2\left(-15\right)=-30
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई 2x^{2}+ax+bx-15 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,-30 2,-15 3,-10 5,-6
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, नकारात्मक नम्बरको यथार्थ मान सकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -30 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1-30=-29 2-15=-13 3-10=-7 5-6=-1
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-6 b=5
समाधान त्यो जोडी हो जसले जोडफल -1 दिन्छ।
\left(2x^{2}-6x\right)+\left(5x-15\right)
2x^{2}-x-15 लाई \left(2x^{2}-6x\right)+\left(5x-15\right) को रूपमा पुन: लेख्नुहोस्।
2x\left(x-3\right)+5\left(x-3\right)
2x लाई पहिलो र 5 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x-3\right)\left(2x+5\right)
वितरक गुण प्रयोग गरेर समान टर्म x-3 खण्डिकरण गर्नुहोस्।
x=3 x=-\frac{5}{2}
समीकरणको समाधान पत्ता लगाउन, x-3=0 र 2x+5=0 को समाधान गर्नुहोस्।
2x^{2}-x-15=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-15\right)}}{2\times 2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 2 ले, b लाई -1 ले र c लाई -15 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-15\right)}}{2\times 2}
-4 लाई 2 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2\times 2}
-8 लाई -15 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-1\right)±\sqrt{121}}{2\times 2}
120 मा 1 जोड्नुहोस्
x=\frac{-\left(-1\right)±11}{2\times 2}
121 को वर्गमूल निकाल्नुहोस्।
x=\frac{1±11}{2\times 2}
-1 विपरीत 1हो।
x=\frac{1±11}{4}
2 लाई 2 पटक गुणन गर्नुहोस्।
x=\frac{12}{4}
अब ± प्लस मानेर x=\frac{1±11}{4} समीकरणलाई हल गर्नुहोस्। 11 मा 1 जोड्नुहोस्
x=3
12 लाई 4 ले भाग गर्नुहोस्।
x=-\frac{10}{4}
अब ± माइनस मानेर x=\frac{1±11}{4} समीकरणलाई हल गर्नुहोस्। 1 बाट 11 घटाउनुहोस्।
x=-\frac{5}{2}
2 लाई झिकेर र रद्द गरेर, भिनन \frac{-10}{4} लाई तल्लो टर्ममा घटाउनुहोस्।
x=3 x=-\frac{5}{2}
अब समिकरण समाधान भएको छ।
2x^{2}-x-15=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
2x^{2}-x-15-\left(-15\right)=-\left(-15\right)
समीकरणको दुबैतिर 15 जोड्नुहोस्।
2x^{2}-x=-\left(-15\right)
-15 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
2x^{2}-x=15
0 बाट -15 घटाउनुहोस्।
\frac{2x^{2}-x}{2}=\frac{15}{2}
दुबैतिर 2 ले भाग गर्नुहोस्।
x^{2}-\frac{1}{2}x=\frac{15}{2}
2 द्वारा भाग गर्नाले 2 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{15}{2}+\left(-\frac{1}{4}\right)^{2}
2 द्वारा -\frac{1}{4} प्राप्त गर्न x पदको गुणाङ्कलाई -\frac{1}{2} ले भाग गर्नुहोस्। त्यसपछि -\frac{1}{4} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{15}{2}+\frac{1}{16}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर -\frac{1}{4} लाई वर्ग गर्नुहोस्।
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{121}{16}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{15}{2} लाई \frac{1}{16} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
\left(x-\frac{1}{4}\right)^{2}=\frac{121}{16}
कारक x^{2}-\frac{1}{2}x+\frac{1}{16}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x-\frac{1}{4}=\frac{11}{4} x-\frac{1}{4}=-\frac{11}{4}
सरल गर्नुहोस्।
x=3 x=-\frac{5}{2}
समीकरणको दुबैतिर \frac{1}{4} जोड्नुहोस्।