x को लागि हल गर्नुहोस्
x=\frac{\sqrt{1217}-35}{4}\approx -0.028618229
x=\frac{-\sqrt{1217}-35}{4}\approx -17.471381771
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
2x^{2}+35x=-1
दुबै छेउहरूमा 35x थप्नुहोस्।
2x^{2}+35x+1=0
दुबै छेउहरूमा 1 थप्नुहोस्।
x=\frac{-35±\sqrt{35^{2}-4\times 2}}{2\times 2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 2 ले, b लाई 35 ले र c लाई 1 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-35±\sqrt{1225-4\times 2}}{2\times 2}
35 वर्ग गर्नुहोस्।
x=\frac{-35±\sqrt{1225-8}}{2\times 2}
-4 लाई 2 पटक गुणन गर्नुहोस्।
x=\frac{-35±\sqrt{1217}}{2\times 2}
-8 मा 1225 जोड्नुहोस्
x=\frac{-35±\sqrt{1217}}{4}
2 लाई 2 पटक गुणन गर्नुहोस्।
x=\frac{\sqrt{1217}-35}{4}
अब ± प्लस मानेर x=\frac{-35±\sqrt{1217}}{4} समीकरणलाई हल गर्नुहोस्। \sqrt{1217} मा -35 जोड्नुहोस्
x=\frac{-\sqrt{1217}-35}{4}
अब ± माइनस मानेर x=\frac{-35±\sqrt{1217}}{4} समीकरणलाई हल गर्नुहोस्। -35 बाट \sqrt{1217} घटाउनुहोस्।
x=\frac{\sqrt{1217}-35}{4} x=\frac{-\sqrt{1217}-35}{4}
अब समिकरण समाधान भएको छ।
2x^{2}+35x=-1
दुबै छेउहरूमा 35x थप्नुहोस्।
\frac{2x^{2}+35x}{2}=-\frac{1}{2}
दुबैतिर 2 ले भाग गर्नुहोस्।
x^{2}+\frac{35}{2}x=-\frac{1}{2}
2 द्वारा भाग गर्नाले 2 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}+\frac{35}{2}x+\left(\frac{35}{4}\right)^{2}=-\frac{1}{2}+\left(\frac{35}{4}\right)^{2}
2 द्वारा \frac{35}{4} प्राप्त गर्न x पदको गुणाङ्कलाई \frac{35}{2} ले भाग गर्नुहोस्। त्यसपछि \frac{35}{4} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+\frac{35}{2}x+\frac{1225}{16}=-\frac{1}{2}+\frac{1225}{16}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर \frac{35}{4} लाई वर्ग गर्नुहोस्।
x^{2}+\frac{35}{2}x+\frac{1225}{16}=\frac{1217}{16}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{1}{2} लाई \frac{1225}{16} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
\left(x+\frac{35}{4}\right)^{2}=\frac{1217}{16}
कारक x^{2}+\frac{35}{2}x+\frac{1225}{16}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x+\frac{35}{4}\right)^{2}}=\sqrt{\frac{1217}{16}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+\frac{35}{4}=\frac{\sqrt{1217}}{4} x+\frac{35}{4}=-\frac{\sqrt{1217}}{4}
सरल गर्नुहोस्।
x=\frac{\sqrt{1217}-35}{4} x=\frac{-\sqrt{1217}-35}{4}
समीकरणको दुबैतिरबाट \frac{35}{4} घटाउनुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}