गुणन खण्ड
2\left(x+2\right)\left(x+6\right)
मूल्याङ्कन गर्नुहोस्
2\left(x+2\right)\left(x+6\right)
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
2\left(x^{2}+8x+12\right)
2 को गुणन खण्ड निकाल्नुहोस्।
a+b=8 ab=1\times 12=12
मानौं x^{2}+8x+12। एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई x^{2}+ax+bx+12 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,12 2,6 3,4
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, a र b दुबै सकारात्मक हुन्छन्। गुणनफल 12 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1+12=13 2+6=8 3+4=7
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=2 b=6
समाधान त्यो जोडी हो जसले जोडफल 8 दिन्छ।
\left(x^{2}+2x\right)+\left(6x+12\right)
x^{2}+8x+12 लाई \left(x^{2}+2x\right)+\left(6x+12\right) को रूपमा पुन: लेख्नुहोस्।
x\left(x+2\right)+6\left(x+2\right)
x लाई पहिलो र 6 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x+2\right)\left(x+6\right)
वितरक गुण प्रयोग गरेर समान टर्म x+2 खण्डिकरण गर्नुहोस्।
2\left(x+2\right)\left(x+6\right)
पूर्णतया खण्डीकरण गरिएको अभिव्यञ्जक पुन: लेख्नुहोस्।
2x^{2}+16x+24=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-16±\sqrt{16^{2}-4\times 2\times 24}}{2\times 2}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-16±\sqrt{256-4\times 2\times 24}}{2\times 2}
16 वर्ग गर्नुहोस्।
x=\frac{-16±\sqrt{256-8\times 24}}{2\times 2}
-4 लाई 2 पटक गुणन गर्नुहोस्।
x=\frac{-16±\sqrt{256-192}}{2\times 2}
-8 लाई 24 पटक गुणन गर्नुहोस्।
x=\frac{-16±\sqrt{64}}{2\times 2}
-192 मा 256 जोड्नुहोस्
x=\frac{-16±8}{2\times 2}
64 को वर्गमूल निकाल्नुहोस्।
x=\frac{-16±8}{4}
2 लाई 2 पटक गुणन गर्नुहोस्।
x=-\frac{8}{4}
अब ± प्लस मानेर x=\frac{-16±8}{4} समीकरणलाई हल गर्नुहोस्। 8 मा -16 जोड्नुहोस्
x=-2
-8 लाई 4 ले भाग गर्नुहोस्।
x=-\frac{24}{4}
अब ± माइनस मानेर x=\frac{-16±8}{4} समीकरणलाई हल गर्नुहोस्। -16 बाट 8 घटाउनुहोस्।
x=-6
-24 लाई 4 ले भाग गर्नुहोस्।
2x^{2}+16x+24=2\left(x-\left(-2\right)\right)\left(x-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि -2 र x_{2} को लागि -6 प्रतिस्थापित गर्नुहोस्।
2x^{2}+16x+24=2\left(x+2\right)\left(x+6\right)
p-\left(-q\right) देखि p+q को स्वरूपमा रहेका सबै अभिव्यञ्जकहरूलाई सरल गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}