मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

2x-2y=14
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2y घटाउनुहोस्।
3y+5x=3
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 5x थप्नुहोस्।
2x-2y=14,5x+3y=3
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x-2y=14
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=2y+14
समीकरणको दुबैतिर 2y जोड्नुहोस्।
x=\frac{1}{2}\left(2y+14\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=y+7
\frac{1}{2} लाई 14+2y पटक गुणन गर्नुहोस्।
5\left(y+7\right)+3y=3
y+7 लाई x ले अर्को समीकरण 5x+3y=3 मा प्रतिस्थापन गर्नुहोस्।
5y+35+3y=3
5 लाई y+7 पटक गुणन गर्नुहोस्।
8y+35=3
3y मा 5y जोड्नुहोस्
8y=-32
समीकरणको दुबैतिरबाट 35 घटाउनुहोस्।
y=-4
दुबैतिर 8 ले भाग गर्नुहोस्।
x=-4+7
x=y+7 मा y लाई -4 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=3
-4 मा 7 जोड्नुहोस्
x=3,y=-4
अब प्रणाली समाधान भएको छ।
2x-2y=14
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2y घटाउनुहोस्।
3y+5x=3
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 5x थप्नुहोस्।
2x-2y=14,5x+3y=3
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&-2\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\3\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&-2\\5&3\end{matrix}\right))\left(\begin{matrix}2&-2\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\5&3\end{matrix}\right))\left(\begin{matrix}14\\3\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&-2\\5&3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\5&3\end{matrix}\right))\left(\begin{matrix}14\\3\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\5&3\end{matrix}\right))\left(\begin{matrix}14\\3\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-2\times 5\right)}&-\frac{-2}{2\times 3-\left(-2\times 5\right)}\\-\frac{5}{2\times 3-\left(-2\times 5\right)}&\frac{2}{2\times 3-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}14\\3\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{16}&\frac{1}{8}\\-\frac{5}{16}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}14\\3\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{16}\times 14+\frac{1}{8}\times 3\\-\frac{5}{16}\times 14+\frac{1}{8}\times 3\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-4\end{matrix}\right)
हिसाब गर्नुहोस्।
x=3,y=-4
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x-2y=14
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2y घटाउनुहोस्।
3y+5x=3
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 5x थप्नुहोस्।
2x-2y=14,5x+3y=3
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
5\times 2x+5\left(-2\right)y=5\times 14,2\times 5x+2\times 3y=2\times 3
2x र 5x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 5 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस्।
10x-10y=70,10x+6y=6
सरल गर्नुहोस्।
10x-10x-10y-6y=70-6
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 10x-10y=70 बाट 10x+6y=6 घटाउनुहोस्।
-10y-6y=70-6
-10x मा 10x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 10x र -10x राशी रद्द हुन्छन्।
-16y=70-6
-6y मा -10y जोड्नुहोस्
-16y=64
-6 मा 70 जोड्नुहोस्
y=-4
दुबैतिर -16 ले भाग गर्नुहोस्।
5x+3\left(-4\right)=3
5x+3y=3 मा y लाई -4 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
5x-12=3
3 लाई -4 पटक गुणन गर्नुहोस्।
5x=15
समीकरणको दुबैतिर 12 जोड्नुहोस्।
x=3
दुबैतिर 5 ले भाग गर्नुहोस्।
x=3,y=-4
अब प्रणाली समाधान भएको छ।