मुख्य सामग्रीमा स्किप गर्नुहोस्
q को लागि हल गर्नुहोस्
Tick mark Image
प्रश्नोत्तरी
Polynomial

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

±\frac{1}{2},±1
संयुक्तिक मूलको सिद्धान्त अनुसार, बहुपरीयका सबै संयुक्तिक मूलहरू \frac{p}{q} को रूपमा हुन्छन्, जहाँ p ले स्थिर राशी 1 लाई भाग गर्छ र q ले प्रमुख गुणांक 2 लाई भाग गर्छ। सबै सम्भावित खण्डहरू \frac{p}{q} सूचीबद्ध गर्नुहोस्।
q=1
सबै पूर्ण संख्याहरू प्रयोग गरेर सबैभन्दा सानो निरपेक्ष मानद्वारा सुरु हुने वर्गमूल फेला पार्नुहोस्। यदि पूर्ण संख्याका कुनै पनि वर्गमूल फेला पर्दैनन् भने, भिन्नहरू प्रयोग गर्नुहोस्।
2q^{2}-q-1=0
खण्ड सम्बन्धी सिद्धान्त अनुसार, q-k हरेक मूल k को बहुपदीय खण्ड हो। 2q^{2}-q-1 प्राप्त गर्नको लागि 2q^{3}-3q^{2}+1 लाई q-1 द्वारा भाग गर्नुहोस्। परिणाम 0 बराबर आउने गरी समीकरणलाई समाधान गर्नुहोस्।
q=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
ax^{2}+bx+c=0 ढाँचाका सबै समीकरणहरूलाई क्वाड्रेटिक सूत्र प्रयोग गरी समाधन गर्न सकिन्छ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। क्वाड्रेटिक सूत्रमा a लाई 2 ले, b लाई -1 ले, र c लाई -1 ले प्रतिस्थापन गर्नुहोस्।
q=\frac{1±3}{4}
हिसाब गर्नुहोस्।
q=-\frac{1}{2} q=1
± प्लस र ± माइनस हुँदा समीकरण 2q^{2}-q-1=0 लाई समाधान गर्नुहोस्।
q=1 q=-\frac{1}{2}
फेला परेका सबै समाधानहरूलाई सूचीबद्ध गर्नुहोस्।