मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a+b=-7 ab=2\times 5=10
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई 2x^{2}+ax+bx+5 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,-10 -2,-5
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, a र b दुबै नकारात्मक हुन्छन्। गुणनफल 10 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1-10=-11 -2-5=-7
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-5 b=-2
समाधान त्यो जोडी हो जसले जोडफल -7 दिन्छ।
\left(2x^{2}-5x\right)+\left(-2x+5\right)
2x^{2}-7x+5 लाई \left(2x^{2}-5x\right)+\left(-2x+5\right) को रूपमा पुन: लेख्नुहोस्।
x\left(2x-5\right)-\left(2x-5\right)
x लाई पहिलो र -1 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(2x-5\right)\left(x-1\right)
वितरक गुण प्रयोग गरेर समान टर्म 2x-5 खण्डिकरण गर्नुहोस्।
x=\frac{5}{2} x=1
समीकरणको समाधान पत्ता लगाउन, 2x-5=0 र x-1=0 को समाधान गर्नुहोस्।
2x^{2}-7x+5=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times 5}}{2\times 2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 2 ले, b लाई -7 ले र c लाई 5 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\times 5}}{2\times 2}
-7 वर्ग गर्नुहोस्।
x=\frac{-\left(-7\right)±\sqrt{49-8\times 5}}{2\times 2}
-4 लाई 2 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-7\right)±\sqrt{49-40}}{2\times 2}
-8 लाई 5 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-7\right)±\sqrt{9}}{2\times 2}
-40 मा 49 जोड्नुहोस्
x=\frac{-\left(-7\right)±3}{2\times 2}
9 को वर्गमूल निकाल्नुहोस्।
x=\frac{7±3}{2\times 2}
-7 विपरीत 7हो।
x=\frac{7±3}{4}
2 लाई 2 पटक गुणन गर्नुहोस्।
x=\frac{10}{4}
अब ± प्लस मानेर x=\frac{7±3}{4} समीकरणलाई हल गर्नुहोस्। 3 मा 7 जोड्नुहोस्
x=\frac{5}{2}
2 लाई झिकेर र रद्द गरेर, भिनन \frac{10}{4} लाई तल्लो टर्ममा घटाउनुहोस्।
x=\frac{4}{4}
अब ± माइनस मानेर x=\frac{7±3}{4} समीकरणलाई हल गर्नुहोस्। 7 बाट 3 घटाउनुहोस्।
x=1
4 लाई 4 ले भाग गर्नुहोस्।
x=\frac{5}{2} x=1
अब समिकरण समाधान भएको छ।
2x^{2}-7x+5=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
2x^{2}-7x+5-5=-5
समीकरणको दुबैतिरबाट 5 घटाउनुहोस्।
2x^{2}-7x=-5
5 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
\frac{2x^{2}-7x}{2}=-\frac{5}{2}
दुबैतिर 2 ले भाग गर्नुहोस्।
x^{2}-\frac{7}{2}x=-\frac{5}{2}
2 द्वारा भाग गर्नाले 2 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-\frac{5}{2}+\left(-\frac{7}{4}\right)^{2}
2 द्वारा -\frac{7}{4} प्राप्त गर्न x पदको गुणाङ्कलाई -\frac{7}{2} ले भाग गर्नुहोस्। त्यसपछि -\frac{7}{4} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{5}{2}+\frac{49}{16}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर -\frac{7}{4} लाई वर्ग गर्नुहोस्।
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{9}{16}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{5}{2} लाई \frac{49}{16} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
\left(x-\frac{7}{4}\right)^{2}=\frac{9}{16}
कारक x^{2}-\frac{7}{2}x+\frac{49}{16}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x-\frac{7}{4}=\frac{3}{4} x-\frac{7}{4}=-\frac{3}{4}
सरल गर्नुहोस्।
x=\frac{5}{2} x=1
समीकरणको दुबैतिर \frac{7}{4} जोड्नुहोस्।