मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

2x^{2}-55x+3=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-55\right)±\sqrt{\left(-55\right)^{2}-4\times 2\times 3}}{2\times 2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 2 ले, b लाई -55 ले र c लाई 3 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-\left(-55\right)±\sqrt{3025-4\times 2\times 3}}{2\times 2}
-55 वर्ग गर्नुहोस्।
x=\frac{-\left(-55\right)±\sqrt{3025-8\times 3}}{2\times 2}
-4 लाई 2 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-55\right)±\sqrt{3025-24}}{2\times 2}
-8 लाई 3 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-55\right)±\sqrt{3001}}{2\times 2}
-24 मा 3025 जोड्नुहोस्
x=\frac{55±\sqrt{3001}}{2\times 2}
-55 विपरीत 55हो।
x=\frac{55±\sqrt{3001}}{4}
2 लाई 2 पटक गुणन गर्नुहोस्।
x=\frac{\sqrt{3001}+55}{4}
अब ± प्लस मानेर x=\frac{55±\sqrt{3001}}{4} समीकरणलाई हल गर्नुहोस्। \sqrt{3001} मा 55 जोड्नुहोस्
x=\frac{55-\sqrt{3001}}{4}
अब ± माइनस मानेर x=\frac{55±\sqrt{3001}}{4} समीकरणलाई हल गर्नुहोस्। 55 बाट \sqrt{3001} घटाउनुहोस्।
x=\frac{\sqrt{3001}+55}{4} x=\frac{55-\sqrt{3001}}{4}
अब समिकरण समाधान भएको छ।
2x^{2}-55x+3=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
2x^{2}-55x+3-3=-3
समीकरणको दुबैतिरबाट 3 घटाउनुहोस्।
2x^{2}-55x=-3
3 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
\frac{2x^{2}-55x}{2}=-\frac{3}{2}
दुबैतिर 2 ले भाग गर्नुहोस्।
x^{2}-\frac{55}{2}x=-\frac{3}{2}
2 द्वारा भाग गर्नाले 2 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}-\frac{55}{2}x+\left(-\frac{55}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{55}{4}\right)^{2}
2 द्वारा -\frac{55}{4} प्राप्त गर्न x पदको गुणाङ्कलाई -\frac{55}{2} ले भाग गर्नुहोस्। त्यसपछि -\frac{55}{4} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}-\frac{55}{2}x+\frac{3025}{16}=-\frac{3}{2}+\frac{3025}{16}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर -\frac{55}{4} लाई वर्ग गर्नुहोस्।
x^{2}-\frac{55}{2}x+\frac{3025}{16}=\frac{3001}{16}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{3}{2} लाई \frac{3025}{16} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
\left(x-\frac{55}{4}\right)^{2}=\frac{3001}{16}
कारक x^{2}-\frac{55}{2}x+\frac{3025}{16}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x-\frac{55}{4}\right)^{2}}=\sqrt{\frac{3001}{16}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x-\frac{55}{4}=\frac{\sqrt{3001}}{4} x-\frac{55}{4}=-\frac{\sqrt{3001}}{4}
सरल गर्नुहोस्।
x=\frac{\sqrt{3001}+55}{4} x=\frac{55-\sqrt{3001}}{4}
समीकरणको दुबैतिर \frac{55}{4} जोड्नुहोस्।