x को लागि हल गर्नुहोस्
x=\frac{750000y}{17}
y\neq 0
y को लागि हल गर्नुहोस्
y=\frac{17x}{750000}
x\neq 0
ग्राफ
प्रश्नोत्तरी
Linear Equation
5 समस्याहरू यस प्रकार छन्:
15=340 \times { 10 }^{ -6 } \times \frac{ x }{ y }
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
15y=340\times 10^{-6}x
समीकरणको दुबैतिर y ले गुणन गर्नुहोस्।
15y=340\times \frac{1}{1000000}x
-6 को पावरमा 10 हिसाब गरी \frac{1}{1000000} प्राप्त गर्नुहोस्।
15y=\frac{17}{50000}x
\frac{17}{50000} प्राप्त गर्नको लागि 340 र \frac{1}{1000000} गुणा गर्नुहोस्।
\frac{17}{50000}x=15y
साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
\frac{\frac{17}{50000}x}{\frac{17}{50000}}=\frac{15y}{\frac{17}{50000}}
समीकरणको दुबैतिर \frac{17}{50000} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{15y}{\frac{17}{50000}}
\frac{17}{50000} द्वारा भाग गर्नाले \frac{17}{50000} द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x=\frac{750000y}{17}
\frac{17}{50000} को उल्टोले 15y लाई गुणन गरी 15y लाई \frac{17}{50000} ले भाग गर्नुहोस्।
15y=340\times 10^{-6}x
शून्यले गरिने भाग परिभाषित नभएकाले चर y 0 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर y ले गुणन गर्नुहोस्।
15y=340\times \frac{1}{1000000}x
-6 को पावरमा 10 हिसाब गरी \frac{1}{1000000} प्राप्त गर्नुहोस्।
15y=\frac{17}{50000}x
\frac{17}{50000} प्राप्त गर्नको लागि 340 र \frac{1}{1000000} गुणा गर्नुहोस्।
15y=\frac{17x}{50000}
समीकरण मानक रूपमा छ।
\frac{15y}{15}=\frac{17x}{15\times 50000}
दुबैतिर 15 ले भाग गर्नुहोस्।
y=\frac{17x}{15\times 50000}
15 द्वारा भाग गर्नाले 15 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
y=\frac{17x}{750000}
\frac{17x}{50000} लाई 15 ले भाग गर्नुहोस्।
y=\frac{17x}{750000}\text{, }y\neq 0
चर y 0 सँग बराबर हुन सक्दैन।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}