गुणन खण्ड
\left(3x-2\right)\left(4x+1\right)
मूल्याङ्कन गर्नुहोस्
\left(3x-2\right)\left(4x+1\right)
ग्राफ
प्रश्नोत्तरी
Polynomial
12 x ^ { 2 } - 5 x - 2
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
a+b=-5 ab=12\left(-2\right)=-24
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई 12x^{2}+ax+bx-2 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,-24 2,-12 3,-8 4,-6
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, नकारात्मक नम्बरको यथार्थ मान सकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -24 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1-24=-23 2-12=-10 3-8=-5 4-6=-2
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-8 b=3
समाधान त्यो जोडी हो जसले जोडफल -5 दिन्छ।
\left(12x^{2}-8x\right)+\left(3x-2\right)
12x^{2}-5x-2 लाई \left(12x^{2}-8x\right)+\left(3x-2\right) को रूपमा पुन: लेख्नुहोस्।
4x\left(3x-2\right)+3x-2
12x^{2}-8x मा 4x खण्डिकरण गर्नुहोस्।
\left(3x-2\right)\left(4x+1\right)
वितरक गुण प्रयोग गरेर समान टर्म 3x-2 खण्डिकरण गर्नुहोस्।
12x^{2}-5x-2=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 12\left(-2\right)}}{2\times 12}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-5\right)±\sqrt{25-4\times 12\left(-2\right)}}{2\times 12}
-5 वर्ग गर्नुहोस्।
x=\frac{-\left(-5\right)±\sqrt{25-48\left(-2\right)}}{2\times 12}
-4 लाई 12 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-5\right)±\sqrt{25+96}}{2\times 12}
-48 लाई -2 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-5\right)±\sqrt{121}}{2\times 12}
96 मा 25 जोड्नुहोस्
x=\frac{-\left(-5\right)±11}{2\times 12}
121 को वर्गमूल निकाल्नुहोस्।
x=\frac{5±11}{2\times 12}
-5 विपरीत 5हो।
x=\frac{5±11}{24}
2 लाई 12 पटक गुणन गर्नुहोस्।
x=\frac{16}{24}
अब ± प्लस मानेर x=\frac{5±11}{24} समीकरणलाई हल गर्नुहोस्। 11 मा 5 जोड्नुहोस्
x=\frac{2}{3}
8 लाई झिकेर र रद्द गरेर, भिनन \frac{16}{24} लाई तल्लो टर्ममा घटाउनुहोस्।
x=-\frac{6}{24}
अब ± माइनस मानेर x=\frac{5±11}{24} समीकरणलाई हल गर्नुहोस्। 5 बाट 11 घटाउनुहोस्।
x=-\frac{1}{4}
6 लाई झिकेर र रद्द गरेर, भिनन \frac{-6}{24} लाई तल्लो टर्ममा घटाउनुहोस्।
12x^{2}-5x-2=12\left(x-\frac{2}{3}\right)\left(x-\left(-\frac{1}{4}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि \frac{2}{3} र x_{2} को लागि -\frac{1}{4} प्रतिस्थापित गर्नुहोस्।
12x^{2}-5x-2=12\left(x-\frac{2}{3}\right)\left(x+\frac{1}{4}\right)
p-\left(-q\right) देखि p+q को स्वरूपमा रहेका सबै अभिव्यञ्जकहरूलाई सरल गर्नुहोस्।
12x^{2}-5x-2=12\times \frac{3x-2}{3}\left(x+\frac{1}{4}\right)
साझा हर पत्ता लगाइ र अंश घटाएर x बाट \frac{2}{3} घटाउनुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
12x^{2}-5x-2=12\times \frac{3x-2}{3}\times \frac{4x+1}{4}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{1}{4} लाई x मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
12x^{2}-5x-2=12\times \frac{\left(3x-2\right)\left(4x+1\right)}{3\times 4}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी \frac{3x-2}{3} लाई \frac{4x+1}{4} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
12x^{2}-5x-2=12\times \frac{\left(3x-2\right)\left(4x+1\right)}{12}
3 लाई 4 पटक गुणन गर्नुहोस्।
12x^{2}-5x-2=\left(3x-2\right)\left(4x+1\right)
12 र 12 मा सबैभन्दा ठूलो साझा गुणनखण्ड 12 रद्द गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}