गुणन खण्ड
\left(11x-9\right)\left(x+1\right)
मूल्याङ्कन गर्नुहोस्
\left(11x-9\right)\left(x+1\right)
ग्राफ
प्रश्नोत्तरी
Polynomial
11 x ^ { 2 } + 2 x - 9
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
a+b=2 ab=11\left(-9\right)=-99
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई 11x^{2}+ax+bx-9 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,99 -3,33 -9,11
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, सकारात्मक नम्बरको यथार्थ मान नकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -99 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1+99=98 -3+33=30 -9+11=2
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-9 b=11
समाधान त्यो जोडी हो जसले जोडफल 2 दिन्छ।
\left(11x^{2}-9x\right)+\left(11x-9\right)
11x^{2}+2x-9 लाई \left(11x^{2}-9x\right)+\left(11x-9\right) को रूपमा पुन: लेख्नुहोस्।
x\left(11x-9\right)+11x-9
11x^{2}-9x मा x खण्डिकरण गर्नुहोस्।
\left(11x-9\right)\left(x+1\right)
वितरक गुण प्रयोग गरेर समान टर्म 11x-9 खण्डिकरण गर्नुहोस्।
11x^{2}+2x-9=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-2±\sqrt{2^{2}-4\times 11\left(-9\right)}}{2\times 11}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-2±\sqrt{4-4\times 11\left(-9\right)}}{2\times 11}
2 वर्ग गर्नुहोस्।
x=\frac{-2±\sqrt{4-44\left(-9\right)}}{2\times 11}
-4 लाई 11 पटक गुणन गर्नुहोस्।
x=\frac{-2±\sqrt{4+396}}{2\times 11}
-44 लाई -9 पटक गुणन गर्नुहोस्।
x=\frac{-2±\sqrt{400}}{2\times 11}
396 मा 4 जोड्नुहोस्
x=\frac{-2±20}{2\times 11}
400 को वर्गमूल निकाल्नुहोस्।
x=\frac{-2±20}{22}
2 लाई 11 पटक गुणन गर्नुहोस्।
x=\frac{18}{22}
अब ± प्लस मानेर x=\frac{-2±20}{22} समीकरणलाई हल गर्नुहोस्। 20 मा -2 जोड्नुहोस्
x=\frac{9}{11}
2 लाई झिकेर र रद्द गरेर, भिनन \frac{18}{22} लाई तल्लो टर्ममा घटाउनुहोस्।
x=-\frac{22}{22}
अब ± माइनस मानेर x=\frac{-2±20}{22} समीकरणलाई हल गर्नुहोस्। -2 बाट 20 घटाउनुहोस्।
x=-1
-22 लाई 22 ले भाग गर्नुहोस्।
11x^{2}+2x-9=11\left(x-\frac{9}{11}\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि \frac{9}{11} र x_{2} को लागि -1 प्रतिस्थापित गर्नुहोस्।
11x^{2}+2x-9=11\left(x-\frac{9}{11}\right)\left(x+1\right)
p-\left(-q\right) देखि p+q को स्वरूपमा रहेका सबै अभिव्यञ्जकहरूलाई सरल गर्नुहोस्।
11x^{2}+2x-9=11\times \frac{11x-9}{11}\left(x+1\right)
साझा हर पत्ता लगाइ र अंश घटाएर x बाट \frac{9}{11} घटाउनुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
11x^{2}+2x-9=\left(11x-9\right)\left(x+1\right)
11 र 11 मा सबैभन्दा ठूलो साझा गुणनखण्ड 11 रद्द गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}