मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

4x^{2}-x-3=0
साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
a+b=-1 ab=4\left(-3\right)=-12
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई 4x^{2}+ax+bx-3 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,-12 2,-6 3,-4
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, नकारात्मक नम्बरको यथार्थ मान सकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -12 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1-12=-11 2-6=-4 3-4=-1
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-4 b=3
समाधान त्यो जोडी हो जसले जोडफल -1 दिन्छ।
\left(4x^{2}-4x\right)+\left(3x-3\right)
4x^{2}-x-3 लाई \left(4x^{2}-4x\right)+\left(3x-3\right) को रूपमा पुन: लेख्नुहोस्।
4x\left(x-1\right)+3\left(x-1\right)
4x लाई पहिलो र 3 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x-1\right)\left(4x+3\right)
वितरक गुण प्रयोग गरेर समान टर्म x-1 खण्डिकरण गर्नुहोस्।
x=1 x=-\frac{3}{4}
समीकरणको समाधान पत्ता लगाउन, x-1=0 र 4x+3=0 को समाधान गर्नुहोस्।
4x^{2}-x-3=0
साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
x=\frac{-\left(-1\right)±\sqrt{1-4\times 4\left(-3\right)}}{2\times 4}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 4 ले, b लाई -1 ले र c लाई -3 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-\left(-1\right)±\sqrt{1-16\left(-3\right)}}{2\times 4}
-4 लाई 4 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 4}
-16 लाई -3 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 4}
48 मा 1 जोड्नुहोस्
x=\frac{-\left(-1\right)±7}{2\times 4}
49 को वर्गमूल निकाल्नुहोस्।
x=\frac{1±7}{2\times 4}
-1 विपरीत 1हो।
x=\frac{1±7}{8}
2 लाई 4 पटक गुणन गर्नुहोस्।
x=\frac{8}{8}
अब ± प्लस मानेर x=\frac{1±7}{8} समीकरणलाई हल गर्नुहोस्। 7 मा 1 जोड्नुहोस्
x=1
8 लाई 8 ले भाग गर्नुहोस्।
x=-\frac{6}{8}
अब ± माइनस मानेर x=\frac{1±7}{8} समीकरणलाई हल गर्नुहोस्। 1 बाट 7 घटाउनुहोस्।
x=-\frac{3}{4}
2 लाई झिकेर र रद्द गरेर, भिनन \frac{-6}{8} लाई तल्लो टर्ममा घटाउनुहोस्।
x=1 x=-\frac{3}{4}
अब समिकरण समाधान भएको छ।
4x^{2}-x-3=0
साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
4x^{2}-x=3
दुबै छेउहरूमा 3 थप्नुहोस्। शून्यमा कुनै पनि अंक जोड्दा जोडफल सोही अंक बराबर नै हुन्छ।
\frac{4x^{2}-x}{4}=\frac{3}{4}
दुबैतिर 4 ले भाग गर्नुहोस्।
x^{2}-\frac{1}{4}x=\frac{3}{4}
4 द्वारा भाग गर्नाले 4 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\frac{3}{4}+\left(-\frac{1}{8}\right)^{2}
2 द्वारा -\frac{1}{8} प्राप्त गर्न x पदको गुणाङ्कलाई -\frac{1}{4} ले भाग गर्नुहोस्। त्यसपछि -\frac{1}{8} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{3}{4}+\frac{1}{64}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर -\frac{1}{8} लाई वर्ग गर्नुहोस्।
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{49}{64}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{3}{4} लाई \frac{1}{64} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
\left(x-\frac{1}{8}\right)^{2}=\frac{49}{64}
कारक x^{2}-\frac{1}{4}x+\frac{1}{64}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x-\frac{1}{8}=\frac{7}{8} x-\frac{1}{8}=-\frac{7}{8}
सरल गर्नुहोस्।
x=1 x=-\frac{3}{4}
समीकरणको दुबैतिर \frac{1}{8} जोड्नुहोस्।