मुख्य सामग्रीमा स्किप गर्नुहोस्
w को लागि हल गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

w\left(-8w+2\right)=0
w को गुणन खण्ड निकाल्नुहोस्।
w=0 w=\frac{1}{4}
समीकरणको समाधान पत्ता लगाउन, w=0 र -8w+2=0 को समाधान गर्नुहोस्।
-8w^{2}+2w=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
w=\frac{-2±\sqrt{2^{2}}}{2\left(-8\right)}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई -8 ले, b लाई 2 ले र c लाई 0 ले प्रतिस्थापन गर्नुहोस्।
w=\frac{-2±2}{2\left(-8\right)}
2^{2} को वर्गमूल निकाल्नुहोस्।
w=\frac{-2±2}{-16}
2 लाई -8 पटक गुणन गर्नुहोस्।
w=\frac{0}{-16}
अब ± प्लस मानेर w=\frac{-2±2}{-16} समीकरणलाई हल गर्नुहोस्। 2 मा -2 जोड्नुहोस्
w=0
0 लाई -16 ले भाग गर्नुहोस्।
w=-\frac{4}{-16}
अब ± माइनस मानेर w=\frac{-2±2}{-16} समीकरणलाई हल गर्नुहोस्। -2 बाट 2 घटाउनुहोस्।
w=\frac{1}{4}
4 लाई झिकेर र रद्द गरेर, भिनन \frac{-4}{-16} लाई तल्लो टर्ममा घटाउनुहोस्।
w=0 w=\frac{1}{4}
अब समिकरण समाधान भएको छ।
-8w^{2}+2w=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
\frac{-8w^{2}+2w}{-8}=\frac{0}{-8}
दुबैतिर -8 ले भाग गर्नुहोस्।
w^{2}+\frac{2}{-8}w=\frac{0}{-8}
-8 द्वारा भाग गर्नाले -8 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
w^{2}-\frac{1}{4}w=\frac{0}{-8}
2 लाई झिकेर र रद्द गरेर, भिनन \frac{2}{-8} लाई तल्लो टर्ममा घटाउनुहोस्।
w^{2}-\frac{1}{4}w=0
0 लाई -8 ले भाग गर्नुहोस्।
w^{2}-\frac{1}{4}w+\left(-\frac{1}{8}\right)^{2}=\left(-\frac{1}{8}\right)^{2}
2 द्वारा -\frac{1}{8} प्राप्त गर्न x पदको गुणाङ्कलाई -\frac{1}{4} ले भाग गर्नुहोस्। त्यसपछि -\frac{1}{8} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
w^{2}-\frac{1}{4}w+\frac{1}{64}=\frac{1}{64}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर -\frac{1}{8} लाई वर्ग गर्नुहोस्।
\left(w-\frac{1}{8}\right)^{2}=\frac{1}{64}
कारक w^{2}-\frac{1}{4}w+\frac{1}{64}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(w-\frac{1}{8}\right)^{2}}=\sqrt{\frac{1}{64}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
w-\frac{1}{8}=\frac{1}{8} w-\frac{1}{8}=-\frac{1}{8}
सरल गर्नुहोस्।
w=\frac{1}{4} w=0
समीकरणको दुबैतिर \frac{1}{8} जोड्नुहोस्।