मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस् (complex solution)
Tick mark Image
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

-2x^{2}+6x-10+3x^{2}=0
दुबै छेउहरूमा 3x^{2} थप्नुहोस्।
x^{2}+6x-10=0
x^{2} प्राप्त गर्नको लागि -2x^{2} र 3x^{2} लाई संयोजन गर्नुहोस्।
x=\frac{-6±\sqrt{6^{2}-4\left(-10\right)}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई 6 ले र c लाई -10 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-6±\sqrt{36-4\left(-10\right)}}{2}
6 वर्ग गर्नुहोस्।
x=\frac{-6±\sqrt{36+40}}{2}
-4 लाई -10 पटक गुणन गर्नुहोस्।
x=\frac{-6±\sqrt{76}}{2}
40 मा 36 जोड्नुहोस्
x=\frac{-6±2\sqrt{19}}{2}
76 को वर्गमूल निकाल्नुहोस्।
x=\frac{2\sqrt{19}-6}{2}
अब ± प्लस मानेर x=\frac{-6±2\sqrt{19}}{2} समीकरणलाई हल गर्नुहोस्। 2\sqrt{19} मा -6 जोड्नुहोस्
x=\sqrt{19}-3
-6+2\sqrt{19} लाई 2 ले भाग गर्नुहोस्।
x=\frac{-2\sqrt{19}-6}{2}
अब ± माइनस मानेर x=\frac{-6±2\sqrt{19}}{2} समीकरणलाई हल गर्नुहोस्। -6 बाट 2\sqrt{19} घटाउनुहोस्।
x=-\sqrt{19}-3
-6-2\sqrt{19} लाई 2 ले भाग गर्नुहोस्।
x=\sqrt{19}-3 x=-\sqrt{19}-3
अब समिकरण समाधान भएको छ।
-2x^{2}+6x-10+3x^{2}=0
दुबै छेउहरूमा 3x^{2} थप्नुहोस्।
x^{2}+6x-10=0
x^{2} प्राप्त गर्नको लागि -2x^{2} र 3x^{2} लाई संयोजन गर्नुहोस्।
x^{2}+6x=10
दुबै छेउहरूमा 10 थप्नुहोस्। शून्यमा कुनै पनि अंक जोड्दा जोडफल सोही अंक बराबर नै हुन्छ।
x^{2}+6x+3^{2}=10+3^{2}
2 द्वारा 3 प्राप्त गर्न x पदको गुणाङ्कलाई 6 ले भाग गर्नुहोस्। त्यसपछि 3 को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+6x+9=10+9
3 वर्ग गर्नुहोस्।
x^{2}+6x+9=19
9 मा 10 जोड्नुहोस्
\left(x+3\right)^{2}=19
कारक x^{2}+6x+9। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x+3\right)^{2}}=\sqrt{19}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+3=\sqrt{19} x+3=-\sqrt{19}
सरल गर्नुहोस्।
x=\sqrt{19}-3 x=-\sqrt{19}-3
समीकरणको दुबैतिरबाट 3 घटाउनुहोस्।
-2x^{2}+6x-10+3x^{2}=0
दुबै छेउहरूमा 3x^{2} थप्नुहोस्।
x^{2}+6x-10=0
x^{2} प्राप्त गर्नको लागि -2x^{2} र 3x^{2} लाई संयोजन गर्नुहोस्।
x=\frac{-6±\sqrt{6^{2}-4\left(-10\right)}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई 6 ले र c लाई -10 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-6±\sqrt{36-4\left(-10\right)}}{2}
6 वर्ग गर्नुहोस्।
x=\frac{-6±\sqrt{36+40}}{2}
-4 लाई -10 पटक गुणन गर्नुहोस्।
x=\frac{-6±\sqrt{76}}{2}
40 मा 36 जोड्नुहोस्
x=\frac{-6±2\sqrt{19}}{2}
76 को वर्गमूल निकाल्नुहोस्।
x=\frac{2\sqrt{19}-6}{2}
अब ± प्लस मानेर x=\frac{-6±2\sqrt{19}}{2} समीकरणलाई हल गर्नुहोस्। 2\sqrt{19} मा -6 जोड्नुहोस्
x=\sqrt{19}-3
-6+2\sqrt{19} लाई 2 ले भाग गर्नुहोस्।
x=\frac{-2\sqrt{19}-6}{2}
अब ± माइनस मानेर x=\frac{-6±2\sqrt{19}}{2} समीकरणलाई हल गर्नुहोस्। -6 बाट 2\sqrt{19} घटाउनुहोस्।
x=-\sqrt{19}-3
-6-2\sqrt{19} लाई 2 ले भाग गर्नुहोस्।
x=\sqrt{19}-3 x=-\sqrt{19}-3
अब समिकरण समाधान भएको छ।
-2x^{2}+6x-10+3x^{2}=0
दुबै छेउहरूमा 3x^{2} थप्नुहोस्।
x^{2}+6x-10=0
x^{2} प्राप्त गर्नको लागि -2x^{2} र 3x^{2} लाई संयोजन गर्नुहोस्।
x^{2}+6x=10
दुबै छेउहरूमा 10 थप्नुहोस्। शून्यमा कुनै पनि अंक जोड्दा जोडफल सोही अंक बराबर नै हुन्छ।
x^{2}+6x+3^{2}=10+3^{2}
2 द्वारा 3 प्राप्त गर्न x पदको गुणाङ्कलाई 6 ले भाग गर्नुहोस्। त्यसपछि 3 को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+6x+9=10+9
3 वर्ग गर्नुहोस्।
x^{2}+6x+9=19
9 मा 10 जोड्नुहोस्
\left(x+3\right)^{2}=19
कारक x^{2}+6x+9। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x+3\right)^{2}}=\sqrt{19}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+3=\sqrt{19} x+3=-\sqrt{19}
सरल गर्नुहोस्।
x=\sqrt{19}-3 x=-\sqrt{19}-3
समीकरणको दुबैतिरबाट 3 घटाउनुहोस्।