मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\left(x^{2}+9x+18\right)\left(x-1\right)\left(x-2\right)=12x^{2}
x+6 लाई x+3 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
\left(x^{3}+8x^{2}+9x-18\right)\left(x-2\right)=12x^{2}
x^{2}+9x+18 लाई x-1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
x^{4}+6x^{3}-7x^{2}-36x+36=12x^{2}
x^{3}+8x^{2}+9x-18 लाई x-2 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
x^{4}+6x^{3}-7x^{2}-36x+36-12x^{2}=0
दुवै छेउबाट 12x^{2} घटाउनुहोस्।
x^{4}+6x^{3}-19x^{2}-36x+36=0
-19x^{2} प्राप्त गर्नको लागि -7x^{2} र -12x^{2} लाई संयोजन गर्नुहोस्।
±36,±18,±12,±9,±6,±4,±3,±2,±1
संयुक्तिक मूलको सिद्धान्त अनुसार, बहुपरीयका सबै संयुक्तिक मूलहरू \frac{p}{q} को रूपमा हुन्छन्, जहाँ p ले स्थिर राशी 36 लाई भाग गर्छ र q ले प्रमुख गुणांक 1 लाई भाग गर्छ। सबै सम्भावित खण्डहरू \frac{p}{q} सूचीबद्ध गर्नुहोस्।
x=-2
सबै पूर्ण संख्याहरू प्रयोग गरेर सबैभन्दा सानो निरपेक्ष मानद्वारा सुरु हुने वर्गमूल फेला पार्नुहोस्। यदि पूर्ण संख्याका कुनै पनि वर्गमूल फेला पर्दैनन् भने, भिन्नहरू प्रयोग गर्नुहोस्।
x^{3}+4x^{2}-27x+18=0
खण्ड सम्बन्धी सिद्धान्त अनुसार, x-k हरेक मूल k को बहुपदीय खण्ड हो। x^{3}+4x^{2}-27x+18 प्राप्त गर्नको लागि x^{4}+6x^{3}-19x^{2}-36x+36 लाई x+2 द्वारा भाग गर्नुहोस्। परिणाम 0 बराबर आउने गरी समीकरणलाई समाधान गर्नुहोस्।
±18,±9,±6,±3,±2,±1
संयुक्तिक मूलको सिद्धान्त अनुसार, बहुपरीयका सबै संयुक्तिक मूलहरू \frac{p}{q} को रूपमा हुन्छन्, जहाँ p ले स्थिर राशी 18 लाई भाग गर्छ र q ले प्रमुख गुणांक 1 लाई भाग गर्छ। सबै सम्भावित खण्डहरू \frac{p}{q} सूचीबद्ध गर्नुहोस्।
x=3
सबै पूर्ण संख्याहरू प्रयोग गरेर सबैभन्दा सानो निरपेक्ष मानद्वारा सुरु हुने वर्गमूल फेला पार्नुहोस्। यदि पूर्ण संख्याका कुनै पनि वर्गमूल फेला पर्दैनन् भने, भिन्नहरू प्रयोग गर्नुहोस्।
x^{2}+7x-6=0
खण्ड सम्बन्धी सिद्धान्त अनुसार, x-k हरेक मूल k को बहुपदीय खण्ड हो। x^{2}+7x-6 प्राप्त गर्नको लागि x^{3}+4x^{2}-27x+18 लाई x-3 द्वारा भाग गर्नुहोस्। परिणाम 0 बराबर आउने गरी समीकरणलाई समाधान गर्नुहोस्।
x=\frac{-7±\sqrt{7^{2}-4\times 1\left(-6\right)}}{2}
ax^{2}+bx+c=0 ढाँचाका सबै समीकरणहरूलाई क्वाड्रेटिक सूत्र प्रयोग गरी समाधन गर्न सकिन्छ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। क्वाड्रेटिक सूत्रमा a लाई 1 ले, b लाई 7 ले, र c लाई -6 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-7±\sqrt{73}}{2}
हिसाब गर्नुहोस्।
x=\frac{-\sqrt{73}-7}{2} x=\frac{\sqrt{73}-7}{2}
± प्लस र ± माइनस हुँदा समीकरण x^{2}+7x-6=0 लाई समाधान गर्नुहोस्।
x=-2 x=3 x=\frac{-\sqrt{73}-7}{2} x=\frac{\sqrt{73}-7}{2}
फेला परेका सबै समाधानहरूलाई सूचीबद्ध गर्नुहोस्।