x को लागि हल गर्नुहोस्
x=\frac{1}{2}=0.5
x=0
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
x^{2}+x-2+2=x\left(2-x\right)
x+2 लाई x-1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
x^{2}+x=x\left(2-x\right)
0 प्राप्त गर्नको लागि -2 र 2 जोड्नुहोस्।
x^{2}+x=2x-x^{2}
x लाई 2-x ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
x^{2}+x-2x=-x^{2}
दुवै छेउबाट 2x घटाउनुहोस्।
x^{2}-x=-x^{2}
-x प्राप्त गर्नको लागि x र -2x लाई संयोजन गर्नुहोस्।
x^{2}-x+x^{2}=0
दुबै छेउहरूमा x^{2} थप्नुहोस्।
2x^{2}-x=0
2x^{2} प्राप्त गर्नको लागि x^{2} र x^{2} लाई संयोजन गर्नुहोस्।
x\left(2x-1\right)=0
x को गुणन खण्ड निकाल्नुहोस्।
x=0 x=\frac{1}{2}
समीकरणको समाधान पत्ता लगाउन, x=0 र 2x-1=0 को समाधान गर्नुहोस्।
x^{2}+x-2+2=x\left(2-x\right)
x+2 लाई x-1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
x^{2}+x=x\left(2-x\right)
0 प्राप्त गर्नको लागि -2 र 2 जोड्नुहोस्।
x^{2}+x=2x-x^{2}
x लाई 2-x ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
x^{2}+x-2x=-x^{2}
दुवै छेउबाट 2x घटाउनुहोस्।
x^{2}-x=-x^{2}
-x प्राप्त गर्नको लागि x र -2x लाई संयोजन गर्नुहोस्।
x^{2}-x+x^{2}=0
दुबै छेउहरूमा x^{2} थप्नुहोस्।
2x^{2}-x=0
2x^{2} प्राप्त गर्नको लागि x^{2} र x^{2} लाई संयोजन गर्नुहोस्।
x=\frac{-\left(-1\right)±\sqrt{1}}{2\times 2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 2 ले, b लाई -1 ले र c लाई 0 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-\left(-1\right)±1}{2\times 2}
1 को वर्गमूल निकाल्नुहोस्।
x=\frac{1±1}{2\times 2}
-1 विपरीत 1हो।
x=\frac{1±1}{4}
2 लाई 2 पटक गुणन गर्नुहोस्।
x=\frac{2}{4}
अब ± प्लस मानेर x=\frac{1±1}{4} समीकरणलाई हल गर्नुहोस्। 1 मा 1 जोड्नुहोस्
x=\frac{1}{2}
2 लाई झिकेर र रद्द गरेर, भिनन \frac{2}{4} लाई तल्लो टर्ममा घटाउनुहोस्।
x=\frac{0}{4}
अब ± माइनस मानेर x=\frac{1±1}{4} समीकरणलाई हल गर्नुहोस्। 1 बाट 1 घटाउनुहोस्।
x=0
0 लाई 4 ले भाग गर्नुहोस्।
x=\frac{1}{2} x=0
अब समिकरण समाधान भएको छ।
x^{2}+x-2+2=x\left(2-x\right)
x+2 लाई x-1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
x^{2}+x=x\left(2-x\right)
0 प्राप्त गर्नको लागि -2 र 2 जोड्नुहोस्।
x^{2}+x=2x-x^{2}
x लाई 2-x ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
x^{2}+x-2x=-x^{2}
दुवै छेउबाट 2x घटाउनुहोस्।
x^{2}-x=-x^{2}
-x प्राप्त गर्नको लागि x र -2x लाई संयोजन गर्नुहोस्।
x^{2}-x+x^{2}=0
दुबै छेउहरूमा x^{2} थप्नुहोस्।
2x^{2}-x=0
2x^{2} प्राप्त गर्नको लागि x^{2} र x^{2} लाई संयोजन गर्नुहोस्।
\frac{2x^{2}-x}{2}=\frac{0}{2}
दुबैतिर 2 ले भाग गर्नुहोस्।
x^{2}-\frac{1}{2}x=\frac{0}{2}
2 द्वारा भाग गर्नाले 2 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}-\frac{1}{2}x=0
0 लाई 2 ले भाग गर्नुहोस्।
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\left(-\frac{1}{4}\right)^{2}
2 द्वारा -\frac{1}{4} प्राप्त गर्न x पदको गुणाङ्कलाई -\frac{1}{2} ले भाग गर्नुहोस्। त्यसपछि -\frac{1}{4} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर -\frac{1}{4} लाई वर्ग गर्नुहोस्।
\left(x-\frac{1}{4}\right)^{2}=\frac{1}{16}
कारक x^{2}-\frac{1}{2}x+\frac{1}{16}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x-\frac{1}{4}=\frac{1}{4} x-\frac{1}{4}=-\frac{1}{4}
सरल गर्नुहोस्।
x=\frac{1}{2} x=0
समीकरणको दुबैतिर \frac{1}{4} जोड्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}