मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

-3x^{2}+6x+10=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-6±\sqrt{6^{2}-4\left(-3\right)\times 10}}{2\left(-3\right)}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-6±\sqrt{36-4\left(-3\right)\times 10}}{2\left(-3\right)}
6 वर्ग गर्नुहोस्।
x=\frac{-6±\sqrt{36+12\times 10}}{2\left(-3\right)}
-4 लाई -3 पटक गुणन गर्नुहोस्।
x=\frac{-6±\sqrt{36+120}}{2\left(-3\right)}
12 लाई 10 पटक गुणन गर्नुहोस्।
x=\frac{-6±\sqrt{156}}{2\left(-3\right)}
120 मा 36 जोड्नुहोस्
x=\frac{-6±2\sqrt{39}}{2\left(-3\right)}
156 को वर्गमूल निकाल्नुहोस्।
x=\frac{-6±2\sqrt{39}}{-6}
2 लाई -3 पटक गुणन गर्नुहोस्।
x=\frac{2\sqrt{39}-6}{-6}
अब ± प्लस मानेर x=\frac{-6±2\sqrt{39}}{-6} समीकरणलाई हल गर्नुहोस्। 2\sqrt{39} मा -6 जोड्नुहोस्
x=-\frac{\sqrt{39}}{3}+1
-6+2\sqrt{39} लाई -6 ले भाग गर्नुहोस्।
x=\frac{-2\sqrt{39}-6}{-6}
अब ± माइनस मानेर x=\frac{-6±2\sqrt{39}}{-6} समीकरणलाई हल गर्नुहोस्। -6 बाट 2\sqrt{39} घटाउनुहोस्।
x=\frac{\sqrt{39}}{3}+1
-6-2\sqrt{39} लाई -6 ले भाग गर्नुहोस्।
-3x^{2}+6x+10=-3\left(x-\left(-\frac{\sqrt{39}}{3}+1\right)\right)\left(x-\left(\frac{\sqrt{39}}{3}+1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि 1-\frac{\sqrt{39}}{3} र x_{2} को लागि 1+\frac{\sqrt{39}}{3} प्रतिस्थापित गर्नुहोस्।