मूल्याङ्कन गर्नुहोस्
\frac{4x^{8}-8x^{7}-28x^{6}+48x^{5}+75x^{4}-90x^{3}-101x^{2}+60x+61}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}
विस्तार गर्नुहोस्
\frac{4x^{8}-8x^{7}-28x^{6}+48x^{5}+75x^{4}-90x^{3}-101x^{2}+60x+61}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। 2x^{2} लाई \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} पटक गुणन गर्नुहोस्।
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
\frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} and \frac{1}{\left(x-2\right)\left(x+1\right)} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश घटाएर घटाउनुहोस्।
\left(\frac{2x^{4}+2x^{3}-4x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
2x^{2}\left(x-2\right)\left(x+1\right)-1 लाई गुणन गर्नुहोस्।
\left(\frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
2x^{4}+2x^{3}-4x^{3}-4x^{2}-1 मा भएका पदहरू जस्तै संयोजन गर्नुहोस्।
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}-8\left(2x^{2}-1\right)+7
\frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)} लाई घाताङ्कमा लैजान, अंश र हर दुबैलाई घाताङ्कमा लैजानुहोस् र त्यसपछि भाग गर्नुहोस्।
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-8\left(2x^{2}-1\right)+7
\left(\left(x-2\right)\left(x+1\right)\right)^{2} लाई विस्तार गर्नुहोस्।
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7
-8 लाई 2x^{2}-1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+15
15 प्राप्त गर्नको लागि 8 र 7 जोड्नुहोस्।
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}+\frac{\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। -16x^{2}+15 लाई \frac{\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} पटक गुणन गर्नुहोस्।
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} र \frac{\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश जोडेर जोड्नुहोस्।
\frac{4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-16x^{6}+32x^{5}+48x^{4}-64x^{3}-64x^{2}+15x^{4}-30x^{3}-45x^{2}+60x+60}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2} लाई गुणन गर्नुहोस्।
\frac{4x^{8}-8x^{7}-28x^{6}+75x^{4}+48x^{5}-90x^{3}-101x^{2}+61+60x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-16x^{6}+32x^{5}+48x^{4}-64x^{3}-64x^{2}+15x^{4}-30x^{3}-45x^{2}+60x+60 मा भएका पदहरू जस्तै संयोजन गर्नुहोस्।
\frac{4x^{8}-8x^{7}-28x^{6}+75x^{4}+48x^{5}-90x^{3}-101x^{2}+61+60x}{x^{4}-2x^{3}-3x^{2}+4x+4}
\left(x-2\right)^{2}\left(x+1\right)^{2} लाई विस्तार गर्नुहोस्।
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। 2x^{2} लाई \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} पटक गुणन गर्नुहोस्।
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
\frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} and \frac{1}{\left(x-2\right)\left(x+1\right)} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश घटाएर घटाउनुहोस्।
\left(\frac{2x^{4}+2x^{3}-4x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
2x^{2}\left(x-2\right)\left(x+1\right)-1 लाई गुणन गर्नुहोस्।
\left(\frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
2x^{4}+2x^{3}-4x^{3}-4x^{2}-1 मा भएका पदहरू जस्तै संयोजन गर्नुहोस्।
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}-8\left(2x^{2}-1\right)+7
\frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)} लाई घाताङ्कमा लैजान, अंश र हर दुबैलाई घाताङ्कमा लैजानुहोस् र त्यसपछि भाग गर्नुहोस्।
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-8\left(2x^{2}-1\right)+7
\left(\left(x-2\right)\left(x+1\right)\right)^{2} लाई विस्तार गर्नुहोस्।
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7
-8 लाई 2x^{2}-1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+15
15 प्राप्त गर्नको लागि 8 र 7 जोड्नुहोस्।
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}+\frac{\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। -16x^{2}+15 लाई \frac{\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} पटक गुणन गर्नुहोस्।
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} र \frac{\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश जोडेर जोड्नुहोस्।
\frac{4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-16x^{6}+32x^{5}+48x^{4}-64x^{3}-64x^{2}+15x^{4}-30x^{3}-45x^{2}+60x+60}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2} लाई गुणन गर्नुहोस्।
\frac{4x^{8}-8x^{7}-28x^{6}+75x^{4}+48x^{5}-90x^{3}-101x^{2}+61+60x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-16x^{6}+32x^{5}+48x^{4}-64x^{3}-64x^{2}+15x^{4}-30x^{3}-45x^{2}+60x+60 मा भएका पदहरू जस्तै संयोजन गर्नुहोस्।
\frac{4x^{8}-8x^{7}-28x^{6}+75x^{4}+48x^{5}-90x^{3}-101x^{2}+61+60x}{x^{4}-2x^{3}-3x^{2}+4x+4}
\left(x-2\right)^{2}\left(x+1\right)^{2} लाई विस्तार गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}