मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x^{4}-18x^{2}+81=0
यस अभिव्यञ्जकलाई खण्डीकरण गर्न, अभिव्यञ्जकलाई 0 सँग बराबर गराएर समीकरण समाधान गर्नुहोस्।
±81,±27,±9,±3,±1
संयुक्तिक मूलको सिद्धान्त अनुसार, बहुपरीयका सबै संयुक्तिक मूलहरू \frac{p}{q} को रूपमा हुन्छन्, जहाँ p ले स्थिर राशी 81 लाई भाग गर्छ र q ले प्रमुख गुणांक 1 लाई भाग गर्छ। सबै सम्भावित खण्डहरू \frac{p}{q} सूचीबद्ध गर्नुहोस्।
x=3
सबै पूर्ण संख्याहरू प्रयोग गरेर सबैभन्दा सानो निरपेक्ष मानद्वारा सुरु हुने वर्गमूल फेला पार्नुहोस्। यदि पूर्ण संख्याका कुनै पनि वर्गमूल फेला पर्दैनन् भने, भिन्नहरू प्रयोग गर्नुहोस्।
x^{3}+3x^{2}-9x-27=0
खण्ड सम्बन्धी सिद्धान्त अनुसार, x-k हरेक मूल k को बहुपदीय खण्ड हो। x^{3}+3x^{2}-9x-27 प्राप्त गर्नको लागि x^{4}-18x^{2}+81 लाई x-3 द्वारा भाग गर्नुहोस्। परिणामलाई खण्डीकरण गर्न, यसलाई 0 सँग बराबर गराएर समीकरण समाधान गर्नुहोस्।
±27,±9,±3,±1
संयुक्तिक मूलको सिद्धान्त अनुसार, बहुपरीयका सबै संयुक्तिक मूलहरू \frac{p}{q} को रूपमा हुन्छन्, जहाँ p ले स्थिर राशी -27 लाई भाग गर्छ र q ले प्रमुख गुणांक 1 लाई भाग गर्छ। सबै सम्भावित खण्डहरू \frac{p}{q} सूचीबद्ध गर्नुहोस्।
x=3
सबै पूर्ण संख्याहरू प्रयोग गरेर सबैभन्दा सानो निरपेक्ष मानद्वारा सुरु हुने वर्गमूल फेला पार्नुहोस्। यदि पूर्ण संख्याका कुनै पनि वर्गमूल फेला पर्दैनन् भने, भिन्नहरू प्रयोग गर्नुहोस्।
x^{2}+6x+9=0
खण्ड सम्बन्धी सिद्धान्त अनुसार, x-k हरेक मूल k को बहुपदीय खण्ड हो। x^{2}+6x+9 प्राप्त गर्नको लागि x^{3}+3x^{2}-9x-27 लाई x-3 द्वारा भाग गर्नुहोस्। परिणामलाई खण्डीकरण गर्न, यसलाई 0 सँग बराबर गराएर समीकरण समाधान गर्नुहोस्।
x=\frac{-6±\sqrt{6^{2}-4\times 1\times 9}}{2}
ax^{2}+bx+c=0 ढाँचाका सबै समीकरणहरूलाई क्वाड्रेटिक सूत्र प्रयोग गरी समाधन गर्न सकिन्छ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। क्वाड्रेटिक सूत्रमा a लाई 1 ले, b लाई 6 ले, र c लाई 9 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-6±0}{2}
हिसाब गर्नुहोस्।
x=-3
समाधानहरू उही हुन्।
\left(x-3\right)^{2}\left(x+3\right)^{2}
प्राप्त मूलहरू प्रयोग गरेर खण्डीकरण गरिएको अभिव्यञ्जक पुन: लेख्नुहोस्।