x को लागि हल गर्नुहोस्
x=24
x=36
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
a+b=-60 ab=864
समीकरणको समाधान गर्न, x^{2}-60x+864 लाई फर्मूला x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) प्रयोग गरी फ्याक्टर निकाल्नुहोस्। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,-864 -2,-432 -3,-288 -4,-216 -6,-144 -8,-108 -9,-96 -12,-72 -16,-54 -18,-48 -24,-36 -27,-32
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, a र b दुबै नकारात्मक हुन्छन्। गुणनफल 864 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1-864=-865 -2-432=-434 -3-288=-291 -4-216=-220 -6-144=-150 -8-108=-116 -9-96=-105 -12-72=-84 -16-54=-70 -18-48=-66 -24-36=-60 -27-32=-59
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-36 b=-24
समाधान त्यो जोडी हो जसले जोडफल -60 दिन्छ।
\left(x-36\right)\left(x-24\right)
प्राप्त मानहरूको प्रयोग गरेर खण्डीकरण गरिएको अभिव्यञ्जक \left(x+a\right)\left(x+b\right) लाई पुन: लेख्नुहोस्।
x=36 x=24
समीकरणको समाधान पत्ता लगाउन, x-36=0 र x-24=0 को समाधान गर्नुहोस्।
a+b=-60 ab=1\times 864=864
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई x^{2}+ax+bx+864 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,-864 -2,-432 -3,-288 -4,-216 -6,-144 -8,-108 -9,-96 -12,-72 -16,-54 -18,-48 -24,-36 -27,-32
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, a र b दुबै नकारात्मक हुन्छन्। गुणनफल 864 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1-864=-865 -2-432=-434 -3-288=-291 -4-216=-220 -6-144=-150 -8-108=-116 -9-96=-105 -12-72=-84 -16-54=-70 -18-48=-66 -24-36=-60 -27-32=-59
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-36 b=-24
समाधान त्यो जोडी हो जसले जोडफल -60 दिन्छ।
\left(x^{2}-36x\right)+\left(-24x+864\right)
x^{2}-60x+864 लाई \left(x^{2}-36x\right)+\left(-24x+864\right) को रूपमा पुन: लेख्नुहोस्।
x\left(x-36\right)-24\left(x-36\right)
x लाई पहिलो र -24 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x-36\right)\left(x-24\right)
वितरक गुण प्रयोग गरेर समान टर्म x-36 खण्डिकरण गर्नुहोस्।
x=36 x=24
समीकरणको समाधान पत्ता लगाउन, x-36=0 र x-24=0 को समाधान गर्नुहोस्।
x^{2}-60x+864=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 864}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई -60 ले र c लाई 864 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-\left(-60\right)±\sqrt{3600-4\times 864}}{2}
-60 वर्ग गर्नुहोस्।
x=\frac{-\left(-60\right)±\sqrt{3600-3456}}{2}
-4 लाई 864 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-60\right)±\sqrt{144}}{2}
-3456 मा 3600 जोड्नुहोस्
x=\frac{-\left(-60\right)±12}{2}
144 को वर्गमूल निकाल्नुहोस्।
x=\frac{60±12}{2}
-60 विपरीत 60हो।
x=\frac{72}{2}
अब ± प्लस मानेर x=\frac{60±12}{2} समीकरणलाई हल गर्नुहोस्। 12 मा 60 जोड्नुहोस्
x=36
72 लाई 2 ले भाग गर्नुहोस्।
x=\frac{48}{2}
अब ± माइनस मानेर x=\frac{60±12}{2} समीकरणलाई हल गर्नुहोस्। 60 बाट 12 घटाउनुहोस्।
x=24
48 लाई 2 ले भाग गर्नुहोस्।
x=36 x=24
अब समिकरण समाधान भएको छ।
x^{2}-60x+864=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
x^{2}-60x+864-864=-864
समीकरणको दुबैतिरबाट 864 घटाउनुहोस्।
x^{2}-60x=-864
864 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
x^{2}-60x+\left(-30\right)^{2}=-864+\left(-30\right)^{2}
2 द्वारा -30 प्राप्त गर्न x पदको गुणाङ्कलाई -60 ले भाग गर्नुहोस्। त्यसपछि -30 को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}-60x+900=-864+900
-30 वर्ग गर्नुहोस्।
x^{2}-60x+900=36
900 मा -864 जोड्नुहोस्
\left(x-30\right)^{2}=36
कारक x^{2}-60x+900। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x-30\right)^{2}}=\sqrt{36}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x-30=6 x-30=-6
सरल गर्नुहोस्।
x=36 x=24
समीकरणको दुबैतिर 30 जोड्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}