x को लागि हल गर्नुहोस्
x=-1
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
ग्राफ
प्रश्नोत्तरी
Polynomial
5 समस्याहरू यस प्रकार छन्:
{ x }^{ 2 } - \frac{ x }{ 2 } - \frac{ 3 }{ 2 } = 0
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
2x^{2}-x-3=0
समीकरणको दुबैतिर 2 ले गुणन गर्नुहोस्।
a+b=-1 ab=2\left(-3\right)=-6
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई 2x^{2}+ax+bx-3 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,-6 2,-3
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, नकारात्मक नम्बरको यथार्थ मान सकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -6 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1-6=-5 2-3=-1
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-3 b=2
समाधान त्यो जोडी हो जसले जोडफल -1 दिन्छ।
\left(2x^{2}-3x\right)+\left(2x-3\right)
2x^{2}-x-3 लाई \left(2x^{2}-3x\right)+\left(2x-3\right) को रूपमा पुन: लेख्नुहोस्।
x\left(2x-3\right)+2x-3
2x^{2}-3x मा x खण्डिकरण गर्नुहोस्।
\left(2x-3\right)\left(x+1\right)
वितरक गुण प्रयोग गरेर समान टर्म 2x-3 खण्डिकरण गर्नुहोस्।
x=\frac{3}{2} x=-1
समीकरणको समाधान पत्ता लगाउन, 2x-3=0 र x+1=0 को समाधान गर्नुहोस्।
2x^{2}-x-3=0
समीकरणको दुबैतिर 2 ले गुणन गर्नुहोस्।
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-3\right)}}{2\times 2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 2 ले, b लाई -1 ले र c लाई -3 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-3\right)}}{2\times 2}
-4 लाई 2 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 2}
-8 लाई -3 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 2}
24 मा 1 जोड्नुहोस्
x=\frac{-\left(-1\right)±5}{2\times 2}
25 को वर्गमूल निकाल्नुहोस्।
x=\frac{1±5}{2\times 2}
-1 विपरीत 1हो।
x=\frac{1±5}{4}
2 लाई 2 पटक गुणन गर्नुहोस्।
x=\frac{6}{4}
अब ± प्लस मानेर x=\frac{1±5}{4} समीकरणलाई हल गर्नुहोस्। 5 मा 1 जोड्नुहोस्
x=\frac{3}{2}
2 लाई झिकेर र रद्द गरेर, भिनन \frac{6}{4} लाई तल्लो टर्ममा घटाउनुहोस्।
x=-\frac{4}{4}
अब ± माइनस मानेर x=\frac{1±5}{4} समीकरणलाई हल गर्नुहोस्। 1 बाट 5 घटाउनुहोस्।
x=-1
-4 लाई 4 ले भाग गर्नुहोस्।
x=\frac{3}{2} x=-1
अब समिकरण समाधान भएको छ।
2x^{2}-x-3=0
समीकरणको दुबैतिर 2 ले गुणन गर्नुहोस्।
2x^{2}-x=3
दुबै छेउहरूमा 3 थप्नुहोस्। शून्यमा कुनै पनि अंक जोड्दा जोडफल सोही अंक बराबर नै हुन्छ।
\frac{2x^{2}-x}{2}=\frac{3}{2}
दुबैतिर 2 ले भाग गर्नुहोस्।
x^{2}-\frac{1}{2}x=\frac{3}{2}
2 द्वारा भाग गर्नाले 2 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{4}\right)^{2}
2 द्वारा -\frac{1}{4} प्राप्त गर्न x पदको गुणाङ्कलाई -\frac{1}{2} ले भाग गर्नुहोस्। त्यसपछि -\frac{1}{4} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{3}{2}+\frac{1}{16}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर -\frac{1}{4} लाई वर्ग गर्नुहोस्।
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{25}{16}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{3}{2} लाई \frac{1}{16} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
\left(x-\frac{1}{4}\right)^{2}=\frac{25}{16}
कारक x^{2}-\frac{1}{2}x+\frac{1}{16}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x-\frac{1}{4}=\frac{5}{4} x-\frac{1}{4}=-\frac{5}{4}
सरल गर्नुहोस्।
x=\frac{3}{2} x=-1
समीकरणको दुबैतिर \frac{1}{4} जोड्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}