x को लागि हल गर्नुहोस्
x=-24
x=-10
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
a+b=34 ab=240
समीकरणको समाधान गर्न, x^{2}+34x+240 लाई फर्मूला x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) प्रयोग गरी फ्याक्टर निकाल्नुहोस्। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,240 2,120 3,80 4,60 5,48 6,40 8,30 10,24 12,20 15,16
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, a र b दुबै सकारात्मक हुन्छन्। गुणनफल 240 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1+240=241 2+120=122 3+80=83 4+60=64 5+48=53 6+40=46 8+30=38 10+24=34 12+20=32 15+16=31
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=10 b=24
समाधान त्यो जोडी हो जसले जोडफल 34 दिन्छ।
\left(x+10\right)\left(x+24\right)
प्राप्त मानहरूको प्रयोग गरेर खण्डीकरण गरिएको अभिव्यञ्जक \left(x+a\right)\left(x+b\right) लाई पुन: लेख्नुहोस्।
x=-10 x=-24
समीकरणको समाधान पत्ता लगाउन, x+10=0 र x+24=0 को समाधान गर्नुहोस्।
a+b=34 ab=1\times 240=240
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई x^{2}+ax+bx+240 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,240 2,120 3,80 4,60 5,48 6,40 8,30 10,24 12,20 15,16
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, a र b दुबै सकारात्मक हुन्छन्। गुणनफल 240 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1+240=241 2+120=122 3+80=83 4+60=64 5+48=53 6+40=46 8+30=38 10+24=34 12+20=32 15+16=31
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=10 b=24
समाधान त्यो जोडी हो जसले जोडफल 34 दिन्छ।
\left(x^{2}+10x\right)+\left(24x+240\right)
x^{2}+34x+240 लाई \left(x^{2}+10x\right)+\left(24x+240\right) को रूपमा पुन: लेख्नुहोस्।
x\left(x+10\right)+24\left(x+10\right)
x लाई पहिलो र 24 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x+10\right)\left(x+24\right)
वितरक गुण प्रयोग गरेर समान टर्म x+10 खण्डिकरण गर्नुहोस्।
x=-10 x=-24
समीकरणको समाधान पत्ता लगाउन, x+10=0 र x+24=0 को समाधान गर्नुहोस्।
x^{2}+34x+240=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-34±\sqrt{34^{2}-4\times 240}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई 34 ले र c लाई 240 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-34±\sqrt{1156-4\times 240}}{2}
34 वर्ग गर्नुहोस्।
x=\frac{-34±\sqrt{1156-960}}{2}
-4 लाई 240 पटक गुणन गर्नुहोस्।
x=\frac{-34±\sqrt{196}}{2}
-960 मा 1156 जोड्नुहोस्
x=\frac{-34±14}{2}
196 को वर्गमूल निकाल्नुहोस्।
x=-\frac{20}{2}
अब ± प्लस मानेर x=\frac{-34±14}{2} समीकरणलाई हल गर्नुहोस्। 14 मा -34 जोड्नुहोस्
x=-10
-20 लाई 2 ले भाग गर्नुहोस्।
x=-\frac{48}{2}
अब ± माइनस मानेर x=\frac{-34±14}{2} समीकरणलाई हल गर्नुहोस्। -34 बाट 14 घटाउनुहोस्।
x=-24
-48 लाई 2 ले भाग गर्नुहोस्।
x=-10 x=-24
अब समिकरण समाधान भएको छ।
x^{2}+34x+240=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
x^{2}+34x+240-240=-240
समीकरणको दुबैतिरबाट 240 घटाउनुहोस्।
x^{2}+34x=-240
240 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
x^{2}+34x+17^{2}=-240+17^{2}
2 द्वारा 17 प्राप्त गर्न x पदको गुणाङ्कलाई 34 ले भाग गर्नुहोस्। त्यसपछि 17 को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+34x+289=-240+289
17 वर्ग गर्नुहोस्।
x^{2}+34x+289=49
289 मा -240 जोड्नुहोस्
\left(x+17\right)^{2}=49
कारक x^{2}+34x+289। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x+17\right)^{2}}=\sqrt{49}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+17=7 x+17=-7
सरल गर्नुहोस्।
x=-10 x=-24
समीकरणको दुबैतिरबाट 17 घटाउनुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}