भिन्नता w.r.t. x
\frac{4\left(16\left(\sin(x)\right)^{2}\left(\cos(x)\right)^{6}+16\left(\cos(x)\right)^{2}\left(\sin(x)\right)^{6}+2\left(\sin(2x)\right)^{4}-4\left(\sin(2x)\right)^{2}+1\right)}{4\left(\sin(2x)\right)^{4}-4\left(\sin(2x)\right)^{2}+1}
मूल्याङ्कन गर्नुहोस्
\tan(4x)
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
\left(\sec(4x^{1})\right)^{2}\frac{\mathrm{d}}{\mathrm{d}x}(4x^{1})
दुई भिन्न फलनहरू f\left(u\right) र u=g\left(x\right) को संयोजन F हो भने, F\left(x\right)=f\left(g\left(x\right)\right) हुन्छ, त्यसपछि u पटक सँग सम्बन्धित F को डेरिभेटिभ f को डेरिभेटिभ हो, x सँग सम्बन्धित g को डेरिभेटिभ हो जुन \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) हुन्छ।
\left(\sec(4x^{1})\right)^{2}\times 4x^{1-1}
बहुपदीयको व्युत्पन्न भनेको यसका पदहरूको व्युत्पन्नहरूको योगफल हो। कुनैपनि अचल पदको व्युत्पन्न 0 हुन्छ। ax^{n} को व्युत्पन्न nax^{n-1} हो।
4\left(\sec(4x^{1})\right)^{2}
सरल गर्नुहोस्।
4\left(\sec(4x)\right)^{2}
कुनैपनि पदका लागि t, t^{1}=t।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}