x, y को लागि हल गर्नुहोस्
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
y = -\frac{5}{2} = -2\frac{1}{2} = -2.5
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
x-y=4,3x-y=7
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x-y=4
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=y+4
समीकरणको दुबैतिर y जोड्नुहोस्।
3\left(y+4\right)-y=7
y+4 लाई x ले अर्को समीकरण 3x-y=7 मा प्रतिस्थापन गर्नुहोस्।
3y+12-y=7
3 लाई y+4 पटक गुणन गर्नुहोस्।
2y+12=7
-y मा 3y जोड्नुहोस्
2y=-5
समीकरणको दुबैतिरबाट 12 घटाउनुहोस्।
y=-\frac{5}{2}
दुबैतिर 2 ले भाग गर्नुहोस्।
x=-\frac{5}{2}+4
x=y+4 मा y लाई -\frac{5}{2} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{3}{2}
-\frac{5}{2} मा 4 जोड्नुहोस्
x=\frac{3}{2},y=-\frac{5}{2}
अब प्रणाली समाधान भएको छ।
x-y=4,3x-y=7
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\7\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&-1\\3&-1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-3\right)}&-\frac{-1}{-1-\left(-3\right)}\\-\frac{3}{-1-\left(-3\right)}&\frac{1}{-1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\-\frac{3}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 4+\frac{1}{2}\times 7\\-\frac{3}{2}\times 4+\frac{1}{2}\times 7\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\-\frac{5}{2}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{3}{2},y=-\frac{5}{2}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x-y=4,3x-y=7
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
x-3x-y+y=4-7
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर x-y=4 बाट 3x-y=7 घटाउनुहोस्।
x-3x=4-7
y मा -y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -y र y राशी रद्द हुन्छन्।
-2x=4-7
-3x मा x जोड्नुहोस्
-2x=-3
-7 मा 4 जोड्नुहोस्
x=\frac{3}{2}
दुबैतिर -2 ले भाग गर्नुहोस्।
3\times \frac{3}{2}-y=7
3x-y=7 मा x लाई \frac{3}{2} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
\frac{9}{2}-y=7
3 लाई \frac{3}{2} पटक गुणन गर्नुहोस्।
-y=\frac{5}{2}
समीकरणको दुबैतिरबाट \frac{9}{2} घटाउनुहोस्।
y=-\frac{5}{2}
दुबैतिर -1 ले भाग गर्नुहोस्।
x=\frac{3}{2},y=-\frac{5}{2}
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}