मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

3x+5y=4,x-3y=6
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
3x+5y=4
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
3x=-5y+4
समीकरणको दुबैतिरबाट 5y घटाउनुहोस्।
x=\frac{1}{3}\left(-5y+4\right)
दुबैतिर 3 ले भाग गर्नुहोस्।
x=-\frac{5}{3}y+\frac{4}{3}
\frac{1}{3} लाई -5y+4 पटक गुणन गर्नुहोस्।
-\frac{5}{3}y+\frac{4}{3}-3y=6
\frac{-5y+4}{3} लाई x ले अर्को समीकरण x-3y=6 मा प्रतिस्थापन गर्नुहोस्।
-\frac{14}{3}y+\frac{4}{3}=6
-3y मा -\frac{5y}{3} जोड्नुहोस्
-\frac{14}{3}y=\frac{14}{3}
समीकरणको दुबैतिरबाट \frac{4}{3} घटाउनुहोस्।
y=-1
समीकरणको दुबैतिर -\frac{14}{3} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{5}{3}\left(-1\right)+\frac{4}{3}
x=-\frac{5}{3}y+\frac{4}{3} मा y लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{5+4}{3}
-\frac{5}{3} लाई -1 पटक गुणन गर्नुहोस्।
x=3
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{4}{3} लाई \frac{5}{3} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=3,y=-1
अब प्रणाली समाधान भएको छ।
3x+5y=4,x-3y=6
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}3&5\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\6\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}3&5\\1&-3\end{matrix}\right))\left(\begin{matrix}3&5\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}3&5\\1&-3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-5}&-\frac{5}{3\left(-3\right)-5}\\-\frac{1}{3\left(-3\right)-5}&\frac{3}{3\left(-3\right)-5}\end{matrix}\right)\left(\begin{matrix}4\\6\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}&\frac{5}{14}\\\frac{1}{14}&-\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}4\\6\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}\times 4+\frac{5}{14}\times 6\\\frac{1}{14}\times 4-\frac{3}{14}\times 6\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
हिसाब गर्नुहोस्।
x=3,y=-1
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
3x+5y=4,x-3y=6
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3x+5y=4,3x+3\left(-3\right)y=3\times 6
3x र x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस्।
3x+5y=4,3x-9y=18
सरल गर्नुहोस्।
3x-3x+5y+9y=4-18
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 3x+5y=4 बाट 3x-9y=18 घटाउनुहोस्।
5y+9y=4-18
-3x मा 3x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 3x र -3x राशी रद्द हुन्छन्।
14y=4-18
9y मा 5y जोड्नुहोस्
14y=-14
-18 मा 4 जोड्नुहोस्
y=-1
दुबैतिर 14 ले भाग गर्नुहोस्।
x-3\left(-1\right)=6
x-3y=6 मा y लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x+3=6
-3 लाई -1 पटक गुणन गर्नुहोस्।
x=3
समीकरणको दुबैतिरबाट 3 घटाउनुहोस्।
x=3,y=-1
अब प्रणाली समाधान भएको छ।