मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

-x-y=-6,2x-3y=-3
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
-x-y=-6
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
-x=y-6
समीकरणको दुबैतिर y जोड्नुहोस्।
x=-\left(y-6\right)
दुबैतिर -1 ले भाग गर्नुहोस्।
x=-y+6
-1 लाई y-6 पटक गुणन गर्नुहोस्।
2\left(-y+6\right)-3y=-3
-y+6 लाई x ले अर्को समीकरण 2x-3y=-3 मा प्रतिस्थापन गर्नुहोस्।
-2y+12-3y=-3
2 लाई -y+6 पटक गुणन गर्नुहोस्।
-5y+12=-3
-3y मा -2y जोड्नुहोस्
-5y=-15
समीकरणको दुबैतिरबाट 12 घटाउनुहोस्।
y=3
दुबैतिर -5 ले भाग गर्नुहोस्।
x=-3+6
x=-y+6 मा y लाई 3 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=3
-3 मा 6 जोड्नुहोस्
x=3,y=3
अब प्रणाली समाधान भएको छ।
-x-y=-6,2x-3y=-3
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-3\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-3\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-3\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-3\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-\left(-3\right)-\left(-2\right)}&-\frac{-1}{-\left(-3\right)-\left(-2\right)}\\-\frac{2}{-\left(-3\right)-\left(-2\right)}&-\frac{1}{-\left(-3\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-3\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}&\frac{1}{5}\\-\frac{2}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-6\\-3\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\left(-6\right)+\frac{1}{5}\left(-3\right)\\-\frac{2}{5}\left(-6\right)-\frac{1}{5}\left(-3\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\3\end{matrix}\right)
हिसाब गर्नुहोस्।
x=3,y=3
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
-x-y=-6,2x-3y=-3
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2\left(-1\right)x+2\left(-1\right)y=2\left(-6\right),-2x-\left(-3y\right)=-\left(-3\right)
-x र 2x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई -1 ले गुणन गर्नुहोस्।
-2x-2y=-12,-2x+3y=3
सरल गर्नुहोस्।
-2x+2x-2y-3y=-12-3
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -2x-2y=-12 बाट -2x+3y=3 घटाउनुहोस्।
-2y-3y=-12-3
2x मा -2x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -2x र 2x राशी रद्द हुन्छन्।
-5y=-12-3
-3y मा -2y जोड्नुहोस्
-5y=-15
-3 मा -12 जोड्नुहोस्
y=3
दुबैतिर -5 ले भाग गर्नुहोस्।
2x-3\times 3=-3
2x-3y=-3 मा y लाई 3 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
2x-9=-3
-3 लाई 3 पटक गुणन गर्नुहोस्।
2x=6
समीकरणको दुबैतिर 9 जोड्नुहोस्।
x=3
दुबैतिर 2 ले भाग गर्नुहोस्।
x=3,y=3
अब प्रणाली समाधान भएको छ।