y, x को लागि हल गर्नुहोस्
x=5
y=-2
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
y-2x=-12
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2x घटाउनुहोस्।
y-2x=-12,5y-3x=-25
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
y-2x=-12
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको y लाई अलग गरी y का लागि हल गर्नुहोस्।
y=2x-12
समीकरणको दुबैतिर 2x जोड्नुहोस्।
5\left(2x-12\right)-3x=-25
-12+2x लाई y ले अर्को समीकरण 5y-3x=-25 मा प्रतिस्थापन गर्नुहोस्।
10x-60-3x=-25
5 लाई -12+2x पटक गुणन गर्नुहोस्।
7x-60=-25
-3x मा 10x जोड्नुहोस्
7x=35
समीकरणको दुबैतिर 60 जोड्नुहोस्।
x=5
दुबैतिर 7 ले भाग गर्नुहोस्।
y=2\times 5-12
y=2x-12 मा x लाई 5 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y=10-12
2 लाई 5 पटक गुणन गर्नुहोस्।
y=-2
10 मा -12 जोड्नुहोस्
y=-2,x=5
अब प्रणाली समाधान भएको छ।
y-2x=-12
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2x घटाउनुहोस्।
y-2x=-12,5y-3x=-25
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&-2\\5&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-12\\-25\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&-2\\5&-3\end{matrix}\right))\left(\begin{matrix}1&-2\\5&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\5&-3\end{matrix}\right))\left(\begin{matrix}-12\\-25\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&-2\\5&-3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\5&-3\end{matrix}\right))\left(\begin{matrix}-12\\-25\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\5&-3\end{matrix}\right))\left(\begin{matrix}-12\\-25\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-\left(-2\times 5\right)}&-\frac{-2}{-3-\left(-2\times 5\right)}\\-\frac{5}{-3-\left(-2\times 5\right)}&\frac{1}{-3-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-12\\-25\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{7}&\frac{2}{7}\\-\frac{5}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-12\\-25\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{7}\left(-12\right)+\frac{2}{7}\left(-25\right)\\-\frac{5}{7}\left(-12\right)+\frac{1}{7}\left(-25\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\5\end{matrix}\right)
हिसाब गर्नुहोस्।
y=-2,x=5
मेट्रिक्स तत्त्वहरू y र x लाई ता्नुहोस्।
y-2x=-12
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2x घटाउनुहोस्।
y-2x=-12,5y-3x=-25
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
5y+5\left(-2\right)x=5\left(-12\right),5y-3x=-25
y र 5y लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 5 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस्।
5y-10x=-60,5y-3x=-25
सरल गर्नुहोस्।
5y-5y-10x+3x=-60+25
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 5y-10x=-60 बाट 5y-3x=-25 घटाउनुहोस्।
-10x+3x=-60+25
-5y मा 5y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 5y र -5y राशी रद्द हुन्छन्।
-7x=-60+25
3x मा -10x जोड्नुहोस्
-7x=-35
25 मा -60 जोड्नुहोस्
x=5
दुबैतिर -7 ले भाग गर्नुहोस्।
5y-3\times 5=-25
5y-3x=-25 मा x लाई 5 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
5y-15=-25
-3 लाई 5 पटक गुणन गर्नुहोस्।
5y=-10
समीकरणको दुबैतिर 15 जोड्नुहोस्।
y=-2
दुबैतिर 5 ले भाग गर्नुहोस्।
y=-2,x=5
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}