x, y को लागि हल गर्नुहोस्
x = \frac{315}{32} = 9\frac{27}{32} = 9.84375
y=\frac{5}{32}=0.15625
ग्राफ
प्रश्नोत्तरी
Simultaneous Equation
\left. \begin{array}{l}{ x + y = 10 }\\{ x = 63 y }\end{array} \right.
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
x-63y=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 63y घटाउनुहोस्।
x+y=10,x-63y=0
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x+y=10
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=-y+10
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
-y+10-63y=0
-y+10 लाई x ले अर्को समीकरण x-63y=0 मा प्रतिस्थापन गर्नुहोस्।
-64y+10=0
-63y मा -y जोड्नुहोस्
-64y=-10
समीकरणको दुबैतिरबाट 10 घटाउनुहोस्।
y=\frac{5}{32}
दुबैतिर -64 ले भाग गर्नुहोस्।
x=-\frac{5}{32}+10
x=-y+10 मा y लाई \frac{5}{32} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{315}{32}
-\frac{5}{32} मा 10 जोड्नुहोस्
x=\frac{315}{32},y=\frac{5}{32}
अब प्रणाली समाधान भएको छ।
x-63y=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 63y घटाउनुहोस्।
x+y=10,x-63y=0
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&1\\1&-63\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\0\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&1\\1&-63\end{matrix}\right))\left(\begin{matrix}1&1\\1&-63\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-63\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&1\\1&-63\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-63\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-63\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{63}{-63-1}&-\frac{1}{-63-1}\\-\frac{1}{-63-1}&\frac{1}{-63-1}\end{matrix}\right)\left(\begin{matrix}10\\0\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{63}{64}&\frac{1}{64}\\\frac{1}{64}&-\frac{1}{64}\end{matrix}\right)\left(\begin{matrix}10\\0\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{63}{64}\times 10\\\frac{1}{64}\times 10\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{315}{32}\\\frac{5}{32}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{315}{32},y=\frac{5}{32}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x-63y=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 63y घटाउनुहोस्।
x+y=10,x-63y=0
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
x-x+y+63y=10
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर x+y=10 बाट x-63y=0 घटाउनुहोस्।
y+63y=10
-x मा x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै x र -x राशी रद्द हुन्छन्।
64y=10
63y मा y जोड्नुहोस्
y=\frac{5}{32}
दुबैतिर 64 ले भाग गर्नुहोस्।
x-63\times \frac{5}{32}=0
x-63y=0 मा y लाई \frac{5}{32} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x-\frac{315}{32}=0
-63 लाई \frac{5}{32} पटक गुणन गर्नुहोस्।
x=\frac{315}{32}
समीकरणको दुबैतिर \frac{315}{32} जोड्नुहोस्।
x=\frac{315}{32},y=\frac{5}{32}
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}