मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

5x-4y=-7,-6x+8y=2
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
5x-4y=-7
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
5x=4y-7
समीकरणको दुबैतिर 4y जोड्नुहोस्।
x=\frac{1}{5}\left(4y-7\right)
दुबैतिर 5 ले भाग गर्नुहोस्।
x=\frac{4}{5}y-\frac{7}{5}
\frac{1}{5} लाई 4y-7 पटक गुणन गर्नुहोस्।
-6\left(\frac{4}{5}y-\frac{7}{5}\right)+8y=2
\frac{4y-7}{5} लाई x ले अर्को समीकरण -6x+8y=2 मा प्रतिस्थापन गर्नुहोस्।
-\frac{24}{5}y+\frac{42}{5}+8y=2
-6 लाई \frac{4y-7}{5} पटक गुणन गर्नुहोस्।
\frac{16}{5}y+\frac{42}{5}=2
8y मा -\frac{24y}{5} जोड्नुहोस्
\frac{16}{5}y=-\frac{32}{5}
समीकरणको दुबैतिरबाट \frac{42}{5} घटाउनुहोस्।
y=-2
समीकरणको दुबैतिर \frac{16}{5} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{4}{5}\left(-2\right)-\frac{7}{5}
x=\frac{4}{5}y-\frac{7}{5} मा y लाई -2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{-8-7}{5}
\frac{4}{5} लाई -2 पटक गुणन गर्नुहोस्।
x=-3
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{7}{5} लाई -\frac{8}{5} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=-3,y=-2
अब प्रणाली समाधान भएको छ।
5x-4y=-7,-6x+8y=2
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}5&-4\\-6&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\2\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}5&-4\\-6&8\end{matrix}\right))\left(\begin{matrix}5&-4\\-6&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-6&8\end{matrix}\right))\left(\begin{matrix}-7\\2\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}5&-4\\-6&8\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-6&8\end{matrix}\right))\left(\begin{matrix}-7\\2\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-6&8\end{matrix}\right))\left(\begin{matrix}-7\\2\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5\times 8-\left(-4\left(-6\right)\right)}&-\frac{-4}{5\times 8-\left(-4\left(-6\right)\right)}\\-\frac{-6}{5\times 8-\left(-4\left(-6\right)\right)}&\frac{5}{5\times 8-\left(-4\left(-6\right)\right)}\end{matrix}\right)\left(\begin{matrix}-7\\2\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{4}\\\frac{3}{8}&\frac{5}{16}\end{matrix}\right)\left(\begin{matrix}-7\\2\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-7\right)+\frac{1}{4}\times 2\\\frac{3}{8}\left(-7\right)+\frac{5}{16}\times 2\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-2\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-3,y=-2
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
5x-4y=-7,-6x+8y=2
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-6\times 5x-6\left(-4\right)y=-6\left(-7\right),5\left(-6\right)x+5\times 8y=5\times 2
5x र -6x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -6 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 5 ले गुणन गर्नुहोस्।
-30x+24y=42,-30x+40y=10
सरल गर्नुहोस्।
-30x+30x+24y-40y=42-10
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -30x+24y=42 बाट -30x+40y=10 घटाउनुहोस्।
24y-40y=42-10
30x मा -30x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -30x र 30x राशी रद्द हुन्छन्।
-16y=42-10
-40y मा 24y जोड्नुहोस्
-16y=32
-10 मा 42 जोड्नुहोस्
y=-2
दुबैतिर -16 ले भाग गर्नुहोस्।
-6x+8\left(-2\right)=2
-6x+8y=2 मा y लाई -2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-6x-16=2
8 लाई -2 पटक गुणन गर्नुहोस्।
-6x=18
समीकरणको दुबैतिर 16 जोड्नुहोस्।
x=-3
दुबैतिर -6 ले भाग गर्नुहोस्।
x=-3,y=-2
अब प्रणाली समाधान भएको छ।