मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

3x-2y=10,x+y=5
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
3x-2y=10
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
3x=2y+10
समीकरणको दुबैतिर 2y जोड्नुहोस्।
x=\frac{1}{3}\left(2y+10\right)
दुबैतिर 3 ले भाग गर्नुहोस्।
x=\frac{2}{3}y+\frac{10}{3}
\frac{1}{3} लाई 10+2y पटक गुणन गर्नुहोस्।
\frac{2}{3}y+\frac{10}{3}+y=5
\frac{10+2y}{3} लाई x ले अर्को समीकरण x+y=5 मा प्रतिस्थापन गर्नुहोस्।
\frac{5}{3}y+\frac{10}{3}=5
y मा \frac{2y}{3} जोड्नुहोस्
\frac{5}{3}y=\frac{5}{3}
समीकरणको दुबैतिरबाट \frac{10}{3} घटाउनुहोस्।
y=1
समीकरणको दुबैतिर \frac{5}{3} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{2+10}{3}
x=\frac{2}{3}y+\frac{10}{3} मा y लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=4
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{10}{3} लाई \frac{2}{3} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=4,y=1
अब प्रणाली समाधान भएको छ।
3x-2y=10,x+y=5
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\5\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}3&-2\\1&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-2\right)}&-\frac{-2}{3-\left(-2\right)}\\-\frac{1}{3-\left(-2\right)}&\frac{3}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\-\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 10+\frac{2}{5}\times 5\\-\frac{1}{5}\times 10+\frac{3}{5}\times 5\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
हिसाब गर्नुहोस्।
x=4,y=1
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
3x-2y=10,x+y=5
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3x-2y=10,3x+3y=3\times 5
3x र x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस्।
3x-2y=10,3x+3y=15
सरल गर्नुहोस्।
3x-3x-2y-3y=10-15
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 3x-2y=10 बाट 3x+3y=15 घटाउनुहोस्।
-2y-3y=10-15
-3x मा 3x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 3x र -3x राशी रद्द हुन्छन्।
-5y=10-15
-3y मा -2y जोड्नुहोस्
-5y=-5
-15 मा 10 जोड्नुहोस्
y=1
दुबैतिर -5 ले भाग गर्नुहोस्।
x+1=5
x+y=5 मा y लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=4
समीकरणको दुबैतिरबाट 1 घटाउनुहोस्।
x=4,y=1
अब प्रणाली समाधान भएको छ।