मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x-7y=-11,5x+2y=-18
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x-7y=-11
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=7y-11
समीकरणको दुबैतिर 7y जोड्नुहोस्।
5\left(7y-11\right)+2y=-18
7y-11 लाई x ले अर्को समीकरण 5x+2y=-18 मा प्रतिस्थापन गर्नुहोस्।
35y-55+2y=-18
5 लाई 7y-11 पटक गुणन गर्नुहोस्।
37y-55=-18
2y मा 35y जोड्नुहोस्
37y=37
समीकरणको दुबैतिर 55 जोड्नुहोस्।
y=1
दुबैतिर 37 ले भाग गर्नुहोस्।
x=7-11
x=7y-11 मा y लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-4
7 मा -11 जोड्नुहोस्
x=-4,y=1
अब प्रणाली समाधान भएको छ।
x-7y=-11,5x+2y=-18
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&-7\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\-18\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&-7\\5&2\end{matrix}\right))\left(\begin{matrix}1&-7\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\5&2\end{matrix}\right))\left(\begin{matrix}-11\\-18\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&-7\\5&2\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\5&2\end{matrix}\right))\left(\begin{matrix}-11\\-18\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\5&2\end{matrix}\right))\left(\begin{matrix}-11\\-18\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-7\times 5\right)}&-\frac{-7}{2-\left(-7\times 5\right)}\\-\frac{5}{2-\left(-7\times 5\right)}&\frac{1}{2-\left(-7\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-11\\-18\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{37}&\frac{7}{37}\\-\frac{5}{37}&\frac{1}{37}\end{matrix}\right)\left(\begin{matrix}-11\\-18\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{37}\left(-11\right)+\frac{7}{37}\left(-18\right)\\-\frac{5}{37}\left(-11\right)+\frac{1}{37}\left(-18\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-4,y=1
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x-7y=-11,5x+2y=-18
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
5x+5\left(-7\right)y=5\left(-11\right),5x+2y=-18
x र 5x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 5 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस्।
5x-35y=-55,5x+2y=-18
सरल गर्नुहोस्।
5x-5x-35y-2y=-55+18
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 5x-35y=-55 बाट 5x+2y=-18 घटाउनुहोस्।
-35y-2y=-55+18
-5x मा 5x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 5x र -5x राशी रद्द हुन्छन्।
-37y=-55+18
-2y मा -35y जोड्नुहोस्
-37y=-37
18 मा -55 जोड्नुहोस्
y=1
दुबैतिर -37 ले भाग गर्नुहोस्।
5x+2=-18
5x+2y=-18 मा y लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
5x=-20
समीकरणको दुबैतिरबाट 2 घटाउनुहोस्।
x=-4
दुबैतिर 5 ले भाग गर्नुहोस्।
x=-4,y=1
अब प्रणाली समाधान भएको छ।