मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x+4y=25,-4x+3y=52
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x+4y=25
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=-4y+25
समीकरणको दुबैतिरबाट 4y घटाउनुहोस्।
-4\left(-4y+25\right)+3y=52
-4y+25 लाई x ले अर्को समीकरण -4x+3y=52 मा प्रतिस्थापन गर्नुहोस्।
16y-100+3y=52
-4 लाई -4y+25 पटक गुणन गर्नुहोस्।
19y-100=52
3y मा 16y जोड्नुहोस्
19y=152
समीकरणको दुबैतिर 100 जोड्नुहोस्।
y=8
दुबैतिर 19 ले भाग गर्नुहोस्।
x=-4\times 8+25
x=-4y+25 मा y लाई 8 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-32+25
-4 लाई 8 पटक गुणन गर्नुहोस्।
x=-7
-32 मा 25 जोड्नुहोस्
x=-7,y=8
अब प्रणाली समाधान भएको छ।
x+4y=25,-4x+3y=52
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&4\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\52\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&4\\-4&3\end{matrix}\right))\left(\begin{matrix}1&4\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-4&3\end{matrix}\right))\left(\begin{matrix}25\\52\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&4\\-4&3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-4&3\end{matrix}\right))\left(\begin{matrix}25\\52\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-4&3\end{matrix}\right))\left(\begin{matrix}25\\52\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-4\left(-4\right)}&-\frac{4}{3-4\left(-4\right)}\\-\frac{-4}{3-4\left(-4\right)}&\frac{1}{3-4\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}25\\52\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}&-\frac{4}{19}\\\frac{4}{19}&\frac{1}{19}\end{matrix}\right)\left(\begin{matrix}25\\52\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}\times 25-\frac{4}{19}\times 52\\\frac{4}{19}\times 25+\frac{1}{19}\times 52\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\8\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-7,y=8
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x+4y=25,-4x+3y=52
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-4x-4\times 4y=-4\times 25,-4x+3y=52
x र -4x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -4 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस्।
-4x-16y=-100,-4x+3y=52
सरल गर्नुहोस्।
-4x+4x-16y-3y=-100-52
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -4x-16y=-100 बाट -4x+3y=52 घटाउनुहोस्।
-16y-3y=-100-52
4x मा -4x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -4x र 4x राशी रद्द हुन्छन्।
-19y=-100-52
-3y मा -16y जोड्नुहोस्
-19y=-152
-52 मा -100 जोड्नुहोस्
y=8
दुबैतिर -19 ले भाग गर्नुहोस्।
-4x+3\times 8=52
-4x+3y=52 मा y लाई 8 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-4x+24=52
3 लाई 8 पटक गुणन गर्नुहोस्।
-4x=28
समीकरणको दुबैतिरबाट 24 घटाउनुहोस्।
x=-7
दुबैतिर -4 ले भाग गर्नुहोस्।
x=-7,y=8
अब प्रणाली समाधान भएको छ।