मुख्य सामग्रीमा स्किप गर्नुहोस्
y, x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

5y+x=44,y-x=4
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
5y+x=44
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको y लाई अलग गरी y का लागि हल गर्नुहोस्।
5y=-x+44
समीकरणको दुबैतिरबाट x घटाउनुहोस्।
y=\frac{1}{5}\left(-x+44\right)
दुबैतिर 5 ले भाग गर्नुहोस्।
y=-\frac{1}{5}x+\frac{44}{5}
\frac{1}{5} लाई -x+44 पटक गुणन गर्नुहोस्।
-\frac{1}{5}x+\frac{44}{5}-x=4
\frac{-x+44}{5} लाई y ले अर्को समीकरण y-x=4 मा प्रतिस्थापन गर्नुहोस्।
-\frac{6}{5}x+\frac{44}{5}=4
-x मा -\frac{x}{5} जोड्नुहोस्
-\frac{6}{5}x=-\frac{24}{5}
समीकरणको दुबैतिरबाट \frac{44}{5} घटाउनुहोस्।
x=4
समीकरणको दुबैतिर -\frac{6}{5} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
y=-\frac{1}{5}\times 4+\frac{44}{5}
y=-\frac{1}{5}x+\frac{44}{5} मा x लाई 4 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y=\frac{-4+44}{5}
-\frac{1}{5} लाई 4 पटक गुणन गर्नुहोस्।
y=8
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{44}{5} लाई -\frac{4}{5} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
y=8,x=4
अब प्रणाली समाधान भएको छ।
5y+x=44,y-x=4
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}5&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}44\\4\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}5&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}44\\4\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}5&1\\1&-1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}44\\4\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}44\\4\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-1}&-\frac{1}{5\left(-1\right)-1}\\-\frac{1}{5\left(-1\right)-1}&\frac{5}{5\left(-1\right)-1}\end{matrix}\right)\left(\begin{matrix}44\\4\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{1}{6}&-\frac{5}{6}\end{matrix}\right)\left(\begin{matrix}44\\4\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 44+\frac{1}{6}\times 4\\\frac{1}{6}\times 44-\frac{5}{6}\times 4\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}8\\4\end{matrix}\right)
हिसाब गर्नुहोस्।
y=8,x=4
मेट्रिक्स तत्त्वहरू y र x लाई ता्नुहोस्।
5y+x=44,y-x=4
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
5y+x=44,5y+5\left(-1\right)x=5\times 4
5y र y लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 5 ले गुणन गर्नुहोस्।
5y+x=44,5y-5x=20
सरल गर्नुहोस्।
5y-5y+x+5x=44-20
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 5y+x=44 बाट 5y-5x=20 घटाउनुहोस्।
x+5x=44-20
-5y मा 5y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 5y र -5y राशी रद्द हुन्छन्।
6x=44-20
5x मा x जोड्नुहोस्
6x=24
-20 मा 44 जोड्नुहोस्
x=4
दुबैतिर 6 ले भाग गर्नुहोस्।
y-4=4
y-x=4 मा x लाई 4 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y=8
समीकरणको दुबैतिर 4 जोड्नुहोस्।
y=8,x=4
अब प्रणाली समाधान भएको छ।