x, y को लागि हल गर्नुहोस्
x=-2
y=-1
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
10x-10y=-10,-10x+8y=12
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
10x-10y=-10
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
10x=10y-10
समीकरणको दुबैतिर 10y जोड्नुहोस्।
x=\frac{1}{10}\left(10y-10\right)
दुबैतिर 10 ले भाग गर्नुहोस्।
x=y-1
\frac{1}{10} लाई -10+10y पटक गुणन गर्नुहोस्।
-10\left(y-1\right)+8y=12
y-1 लाई x ले अर्को समीकरण -10x+8y=12 मा प्रतिस्थापन गर्नुहोस्।
-10y+10+8y=12
-10 लाई y-1 पटक गुणन गर्नुहोस्।
-2y+10=12
8y मा -10y जोड्नुहोस्
-2y=2
समीकरणको दुबैतिरबाट 10 घटाउनुहोस्।
y=-1
दुबैतिर -2 ले भाग गर्नुहोस्।
x=-1-1
x=y-1 मा y लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-2
-1 मा -1 जोड्नुहोस्
x=-2,y=-1
अब प्रणाली समाधान भएको छ।
10x-10y=-10,-10x+8y=12
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\12\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}10&-10\\-10&8\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{10\times 8-\left(-10\left(-10\right)\right)}&-\frac{-10}{10\times 8-\left(-10\left(-10\right)\right)}\\-\frac{-10}{10\times 8-\left(-10\left(-10\right)\right)}&\frac{10}{10\times 8-\left(-10\left(-10\right)\right)}\end{matrix}\right)\left(\begin{matrix}-10\\12\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&-\frac{1}{2}\\-\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-10\\12\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\left(-10\right)-\frac{1}{2}\times 12\\-\frac{1}{2}\left(-10\right)-\frac{1}{2}\times 12\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-2,y=-1
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
10x-10y=-10,-10x+8y=12
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-10\times 10x-10\left(-10\right)y=-10\left(-10\right),10\left(-10\right)x+10\times 8y=10\times 12
10x र -10x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -10 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 10 ले गुणन गर्नुहोस्।
-100x+100y=100,-100x+80y=120
सरल गर्नुहोस्।
-100x+100x+100y-80y=100-120
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -100x+100y=100 बाट -100x+80y=120 घटाउनुहोस्।
100y-80y=100-120
100x मा -100x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -100x र 100x राशी रद्द हुन्छन्।
20y=100-120
-80y मा 100y जोड्नुहोस्
20y=-20
-120 मा 100 जोड्नुहोस्
y=-1
दुबैतिर 20 ले भाग गर्नुहोस्।
-10x+8\left(-1\right)=12
-10x+8y=12 मा y लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-10x-8=12
8 लाई -1 पटक गुणन गर्नुहोस्।
-10x=20
समीकरणको दुबैतिर 8 जोड्नुहोस्।
x=-2
दुबैतिर -10 ले भाग गर्नुहोस्।
x=-2,y=-1
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}