मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

-2x+9y=8,x-2y=6
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
-2x+9y=8
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
-2x=-9y+8
समीकरणको दुबैतिरबाट 9y घटाउनुहोस्।
x=-\frac{1}{2}\left(-9y+8\right)
दुबैतिर -2 ले भाग गर्नुहोस्।
x=\frac{9}{2}y-4
-\frac{1}{2} लाई -9y+8 पटक गुणन गर्नुहोस्।
\frac{9}{2}y-4-2y=6
\frac{9y}{2}-4 लाई x ले अर्को समीकरण x-2y=6 मा प्रतिस्थापन गर्नुहोस्।
\frac{5}{2}y-4=6
-2y मा \frac{9y}{2} जोड्नुहोस्
\frac{5}{2}y=10
समीकरणको दुबैतिर 4 जोड्नुहोस्।
y=4
समीकरणको दुबैतिर \frac{5}{2} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{9}{2}\times 4-4
x=\frac{9}{2}y-4 मा y लाई 4 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=18-4
\frac{9}{2} लाई 4 पटक गुणन गर्नुहोस्।
x=14
18 मा -4 जोड्नुहोस्
x=14,y=4
अब प्रणाली समाधान भएको छ।
-2x+9y=8,x-2y=6
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\6\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right))\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}-2&9\\1&-2\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2\left(-2\right)-9}&-\frac{9}{-2\left(-2\right)-9}\\-\frac{1}{-2\left(-2\right)-9}&-\frac{2}{-2\left(-2\right)-9}\end{matrix}\right)\left(\begin{matrix}8\\6\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{9}{5}\\\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}8\\6\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 8+\frac{9}{5}\times 6\\\frac{1}{5}\times 8+\frac{2}{5}\times 6\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\4\end{matrix}\right)
हिसाब गर्नुहोस्।
x=14,y=4
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
-2x+9y=8,x-2y=6
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-2x+9y=8,-2x-2\left(-2\right)y=-2\times 6
-2x र x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई -2 ले गुणन गर्नुहोस्।
-2x+9y=8,-2x+4y=-12
सरल गर्नुहोस्।
-2x+2x+9y-4y=8+12
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -2x+9y=8 बाट -2x+4y=-12 घटाउनुहोस्।
9y-4y=8+12
2x मा -2x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -2x र 2x राशी रद्द हुन्छन्।
5y=8+12
-4y मा 9y जोड्नुहोस्
5y=20
12 मा 8 जोड्नुहोस्
y=4
दुबैतिर 5 ले भाग गर्नुहोस्।
x-2\times 4=6
x-2y=6 मा y लाई 4 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x-8=6
-2 लाई 4 पटक गुणन गर्नुहोस्।
x=14
समीकरणको दुबैतिर 8 जोड्नुहोस्।
x=14,y=4
अब प्रणाली समाधान भएको छ।