मुख्य सामग्रीमा स्किप गर्नुहोस्
y, x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

y-3x=5
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 3x घटाउनुहोस्।
y-5x=6
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 5x घटाउनुहोस्।
y-3x=5,y-5x=6
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
y-3x=5
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको y लाई अलग गरी y का लागि हल गर्नुहोस्।
y=3x+5
समीकरणको दुबैतिर 3x जोड्नुहोस्।
3x+5-5x=6
3x+5 लाई y ले अर्को समीकरण y-5x=6 मा प्रतिस्थापन गर्नुहोस्।
-2x+5=6
-5x मा 3x जोड्नुहोस्
-2x=1
समीकरणको दुबैतिरबाट 5 घटाउनुहोस्।
x=-\frac{1}{2}
दुबैतिर -2 ले भाग गर्नुहोस्।
y=3\left(-\frac{1}{2}\right)+5
y=3x+5 मा x लाई -\frac{1}{2} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y=-\frac{3}{2}+5
3 लाई -\frac{1}{2} पटक गुणन गर्नुहोस्।
y=\frac{7}{2}
-\frac{3}{2} मा 5 जोड्नुहोस्
y=\frac{7}{2},x=-\frac{1}{2}
अब प्रणाली समाधान भएको छ।
y-3x=5
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 3x घटाउनुहोस्।
y-5x=6
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 5x घटाउनुहोस्।
y-3x=5,y-5x=6
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&-3\\1&-5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\6\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&-3\\1&-5\end{matrix}\right))\left(\begin{matrix}1&-3\\1&-5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-5\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&-3\\1&-5\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-5\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-5\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-5-\left(-3\right)}&-\frac{-3}{-5-\left(-3\right)}\\-\frac{1}{-5-\left(-3\right)}&\frac{1}{-5-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}&-\frac{3}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}\times 5-\frac{3}{2}\times 6\\\frac{1}{2}\times 5-\frac{1}{2}\times 6\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\\-\frac{1}{2}\end{matrix}\right)
हिसाब गर्नुहोस्।
y=\frac{7}{2},x=-\frac{1}{2}
मेट्रिक्स तत्त्वहरू y र x लाई ता्नुहोस्।
y-3x=5
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 3x घटाउनुहोस्।
y-5x=6
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 5x घटाउनुहोस्।
y-3x=5,y-5x=6
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
y-y-3x+5x=5-6
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर y-3x=5 बाट y-5x=6 घटाउनुहोस्।
-3x+5x=5-6
-y मा y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै y र -y राशी रद्द हुन्छन्।
2x=5-6
5x मा -3x जोड्नुहोस्
2x=-1
-6 मा 5 जोड्नुहोस्
x=-\frac{1}{2}
दुबैतिर 2 ले भाग गर्नुहोस्।
y-5\left(-\frac{1}{2}\right)=6
y-5x=6 मा x लाई -\frac{1}{2} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y+\frac{5}{2}=6
-5 लाई -\frac{1}{2} पटक गुणन गर्नुहोस्।
y=\frac{7}{2}
समीकरणको दुबैतिरबाट \frac{5}{2} घटाउनुहोस्।
y=\frac{7}{2},x=-\frac{1}{2}
अब प्रणाली समाधान भएको छ।