मुख्य सामग्रीमा स्किप गर्नुहोस्
y, x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

y+x=4
पहिलो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा x थप्नुहोस्।
y+2x=3
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 2x थप्नुहोस्।
y+x=4,y+2x=3
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
y+x=4
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको y लाई अलग गरी y का लागि हल गर्नुहोस्।
y=-x+4
समीकरणको दुबैतिरबाट x घटाउनुहोस्।
-x+4+2x=3
-x+4 लाई y ले अर्को समीकरण y+2x=3 मा प्रतिस्थापन गर्नुहोस्।
x+4=3
2x मा -x जोड्नुहोस्
x=-1
समीकरणको दुबैतिरबाट 4 घटाउनुहोस्।
y=-\left(-1\right)+4
y=-x+4 मा x लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y=1+4
-1 लाई -1 पटक गुणन गर्नुहोस्।
y=5
1 मा 4 जोड्नुहोस्
y=5,x=-1
अब प्रणाली समाधान भएको छ।
y+x=4
पहिलो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा x थप्नुहोस्।
y+2x=3
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 2x थप्नुहोस्।
y+x=4,y+2x=3
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&1\\1&2\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-1}&-\frac{1}{2-1}\\-\frac{1}{2-1}&\frac{1}{2-1}\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\times 4-3\\-4+3\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\-1\end{matrix}\right)
हिसाब गर्नुहोस्।
y=5,x=-1
मेट्रिक्स तत्त्वहरू y र x लाई ता्नुहोस्।
y+x=4
पहिलो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा x थप्नुहोस्।
y+2x=3
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 2x थप्नुहोस्।
y+x=4,y+2x=3
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
y-y+x-2x=4-3
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर y+x=4 बाट y+2x=3 घटाउनुहोस्।
x-2x=4-3
-y मा y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै y र -y राशी रद्द हुन्छन्।
-x=4-3
-2x मा x जोड्नुहोस्
-x=1
-3 मा 4 जोड्नुहोस्
x=-1
दुबैतिर -1 ले भाग गर्नुहोस्।
y+2\left(-1\right)=3
y+2x=3 मा x लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y-2=3
2 लाई -1 पटक गुणन गर्नुहोस्।
y=5
समीकरणको दुबैतिर 2 जोड्नुहोस्।
y=5,x=-1
अब प्रणाली समाधान भएको छ।