मुख्य सामग्रीमा स्किप गर्नुहोस्
y, x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

y+4x=-3
पहिलो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 4x थप्नुहोस्।
y-x=2
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट x घटाउनुहोस्।
y+4x=-3,y-x=2
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
y+4x=-3
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको y लाई अलग गरी y का लागि हल गर्नुहोस्।
y=-4x-3
समीकरणको दुबैतिरबाट 4x घटाउनुहोस्।
-4x-3-x=2
-4x-3 लाई y ले अर्को समीकरण y-x=2 मा प्रतिस्थापन गर्नुहोस्।
-5x-3=2
-x मा -4x जोड्नुहोस्
-5x=5
समीकरणको दुबैतिर 3 जोड्नुहोस्।
x=-1
दुबैतिर -5 ले भाग गर्नुहोस्।
y=-4\left(-1\right)-3
y=-4x-3 मा x लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y=4-3
-4 लाई -1 पटक गुणन गर्नुहोस्।
y=1
4 मा -3 जोड्नुहोस्
y=1,x=-1
अब प्रणाली समाधान भएको छ।
y+4x=-3
पहिलो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 4x थप्नुहोस्।
y-x=2
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट x घटाउनुहोस्।
y+4x=-3,y-x=2
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&4\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&4\\1&-1\end{matrix}\right))\left(\begin{matrix}1&4\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&-1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&4\\1&-1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&-1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&-1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-4}&-\frac{4}{-1-4}\\-\frac{1}{-1-4}&\frac{1}{-1-4}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{4}{5}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-3\right)+\frac{4}{5}\times 2\\\frac{1}{5}\left(-3\right)-\frac{1}{5}\times 2\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
हिसाब गर्नुहोस्।
y=1,x=-1
मेट्रिक्स तत्त्वहरू y र x लाई ता्नुहोस्।
y+4x=-3
पहिलो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 4x थप्नुहोस्।
y-x=2
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट x घटाउनुहोस्।
y+4x=-3,y-x=2
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
y-y+4x+x=-3-2
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर y+4x=-3 बाट y-x=2 घटाउनुहोस्।
4x+x=-3-2
-y मा y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै y र -y राशी रद्द हुन्छन्।
5x=-3-2
x मा 4x जोड्नुहोस्
5x=-5
-2 मा -3 जोड्नुहोस्
x=-1
दुबैतिर 5 ले भाग गर्नुहोस्।
y-\left(-1\right)=2
y-x=2 मा x लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y+1=2
-1 लाई -1 पटक गुणन गर्नुहोस्।
y=1
समीकरणको दुबैतिरबाट 1 घटाउनुहोस्।
y=1,x=-1
अब प्रणाली समाधान भएको छ।