मुख्य सामग्रीमा स्किप गर्नुहोस्
y, x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

y+25x=45,y+0.3x=35
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
y+25x=45
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको y लाई अलग गरी y का लागि हल गर्नुहोस्।
y=-25x+45
समीकरणको दुबैतिरबाट 25x घटाउनुहोस्।
-25x+45+0.3x=35
-25x+45 लाई y ले अर्को समीकरण y+0.3x=35 मा प्रतिस्थापन गर्नुहोस्।
-24.7x+45=35
\frac{3x}{10} मा -25x जोड्नुहोस्
-24.7x=-10
समीकरणको दुबैतिरबाट 45 घटाउनुहोस्।
x=\frac{100}{247}
समीकरणको दुबैतिर -24.7 ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
y=-25\times \frac{100}{247}+45
y=-25x+45 मा x लाई \frac{100}{247} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y=-\frac{2500}{247}+45
-25 लाई \frac{100}{247} पटक गुणन गर्नुहोस्।
y=\frac{8615}{247}
-\frac{2500}{247} मा 45 जोड्नुहोस्
y=\frac{8615}{247},x=\frac{100}{247}
अब प्रणाली समाधान भएको छ।
y+25x=45,y+0.3x=35
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}45\\35\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right))\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right))\left(\begin{matrix}45\\35\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&25\\1&0.3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right))\left(\begin{matrix}45\\35\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right))\left(\begin{matrix}45\\35\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{0.3}{0.3-25}&-\frac{25}{0.3-25}\\-\frac{1}{0.3-25}&\frac{1}{0.3-25}\end{matrix}\right)\left(\begin{matrix}45\\35\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{247}&\frac{250}{247}\\\frac{10}{247}&-\frac{10}{247}\end{matrix}\right)\left(\begin{matrix}45\\35\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{247}\times 45+\frac{250}{247}\times 35\\\frac{10}{247}\times 45-\frac{10}{247}\times 35\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8615}{247}\\\frac{100}{247}\end{matrix}\right)
हिसाब गर्नुहोस्।
y=\frac{8615}{247},x=\frac{100}{247}
मेट्रिक्स तत्त्वहरू y र x लाई ता्नुहोस्।
y+25x=45,y+0.3x=35
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
y-y+25x-0.3x=45-35
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर y+25x=45 बाट y+0.3x=35 घटाउनुहोस्।
25x-0.3x=45-35
-y मा y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै y र -y राशी रद्द हुन्छन्।
24.7x=45-35
-\frac{3x}{10} मा 25x जोड्नुहोस्
24.7x=10
-35 मा 45 जोड्नुहोस्
x=\frac{100}{247}
समीकरणको दुबैतिर 24.7 ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
y+0.3\times \frac{100}{247}=35
y+0.3x=35 मा x लाई \frac{100}{247} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y+\frac{30}{247}=35
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी 0.3 लाई \frac{100}{247} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
y=\frac{8615}{247}
समीकरणको दुबैतिरबाट \frac{30}{247} घटाउनुहोस्।
y=\frac{8615}{247},x=\frac{100}{247}
अब प्रणाली समाधान भएको छ।