मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x-y=-3
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट y घटाउनुहोस्।
2x-y=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट y घटाउनुहोस्।
x-y=-3,2x-y=0
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x-y=-3
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=y-3
समीकरणको दुबैतिर y जोड्नुहोस्।
2\left(y-3\right)-y=0
y-3 लाई x ले अर्को समीकरण 2x-y=0 मा प्रतिस्थापन गर्नुहोस्।
2y-6-y=0
2 लाई y-3 पटक गुणन गर्नुहोस्।
y-6=0
-y मा 2y जोड्नुहोस्
y=6
समीकरणको दुबैतिर 6 जोड्नुहोस्।
x=6-3
x=y-3 मा y लाई 6 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=3
6 मा -3 जोड्नुहोस्
x=3,y=6
अब प्रणाली समाधान भएको छ।
x-y=-3
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट y घटाउनुहोस्।
2x-y=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट y घटाउनुहोस्।
x-y=-3,2x-y=0
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\0\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\0\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&-1\\2&-1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\0\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\0\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\right)}&-\frac{-1}{-1-\left(-2\right)}\\-\frac{2}{-1-\left(-2\right)}&\frac{1}{-1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-3\\0\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}-3\\0\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\left(-3\right)\\-2\left(-3\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\6\end{matrix}\right)
हिसाब गर्नुहोस्।
x=3,y=6
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x-y=-3
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट y घटाउनुहोस्।
2x-y=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट y घटाउनुहोस्।
x-y=-3,2x-y=0
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
x-2x-y+y=-3
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर x-y=-3 बाट 2x-y=0 घटाउनुहोस्।
x-2x=-3
y मा -y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -y र y राशी रद्द हुन्छन्।
-x=-3
-2x मा x जोड्नुहोस्
x=3
दुबैतिर -1 ले भाग गर्नुहोस्।
2\times 3-y=0
2x-y=0 मा x लाई 3 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
6-y=0
2 लाई 3 पटक गुणन गर्नुहोस्।
-y=-6
समीकरणको दुबैतिरबाट 6 घटाउनुहोस्।
y=6
दुबैतिर -1 ले भाग गर्नुहोस्।
x=3,y=6
अब प्रणाली समाधान भएको छ।