मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x+y-2=0,2x-y-1=1
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x+y-2=0
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x+y=2
समीकरणको दुबैतिर 2 जोड्नुहोस्।
x=-y+2
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
2\left(-y+2\right)-y-1=1
-y+2 लाई x ले अर्को समीकरण 2x-y-1=1 मा प्रतिस्थापन गर्नुहोस्।
-2y+4-y-1=1
2 लाई -y+2 पटक गुणन गर्नुहोस्।
-3y+4-1=1
-y मा -2y जोड्नुहोस्
-3y+3=1
-1 मा 4 जोड्नुहोस्
-3y=-2
समीकरणको दुबैतिरबाट 3 घटाउनुहोस्।
y=\frac{2}{3}
दुबैतिर -3 ले भाग गर्नुहोस्।
x=-\frac{2}{3}+2
x=-y+2 मा y लाई \frac{2}{3} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{4}{3}
-\frac{2}{3} मा 2 जोड्नुहोस्
x=\frac{4}{3},y=\frac{2}{3}
अब प्रणाली समाधान भएको छ।
x+y-2=0,2x-y-1=1
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&1\\2&-1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{1}{-1-2}\\-\frac{2}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 2+\frac{1}{3}\times 2\\\frac{2}{3}\times 2-\frac{1}{3}\times 2\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\\\frac{2}{3}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{4}{3},y=\frac{2}{3}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x+y-2=0,2x-y-1=1
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2x+2y+2\left(-2\right)=0,2x-y-1=1
x र 2x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस्।
2x+2y-4=0,2x-y-1=1
सरल गर्नुहोस्।
2x-2x+2y+y-4+1=-1
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 2x+2y-4=0 बाट 2x-y-1=1 घटाउनुहोस्।
2y+y-4+1=-1
-2x मा 2x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 2x र -2x राशी रद्द हुन्छन्।
3y-4+1=-1
y मा 2y जोड्नुहोस्
3y-3=-1
1 मा -4 जोड्नुहोस्
3y=2
समीकरणको दुबैतिर 3 जोड्नुहोस्।
y=\frac{2}{3}
दुबैतिर 3 ले भाग गर्नुहोस्।
2x-\frac{2}{3}-1=1
2x-y-1=1 मा y लाई \frac{2}{3} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
2x-\frac{5}{3}=1
-1 मा -\frac{2}{3} जोड्नुहोस्
2x=\frac{8}{3}
समीकरणको दुबैतिर \frac{5}{3} जोड्नुहोस्।
x=\frac{4}{3}
दुबैतिर 2 ले भाग गर्नुहोस्।
x=\frac{4}{3},y=\frac{2}{3}
अब प्रणाली समाधान भएको छ।