मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

y-3x=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 3x घटाउनुहोस्।
x+y=8,-3x+y=0
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x+y=8
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=-y+8
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
-3\left(-y+8\right)+y=0
-y+8 लाई x ले अर्को समीकरण -3x+y=0 मा प्रतिस्थापन गर्नुहोस्।
3y-24+y=0
-3 लाई -y+8 पटक गुणन गर्नुहोस्।
4y-24=0
y मा 3y जोड्नुहोस्
4y=24
समीकरणको दुबैतिर 24 जोड्नुहोस्।
y=6
दुबैतिर 4 ले भाग गर्नुहोस्।
x=-6+8
x=-y+8 मा y लाई 6 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=2
-6 मा 8 जोड्नुहोस्
x=2,y=6
अब प्रणाली समाधान भएको छ।
y-3x=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 3x घटाउनुहोस्।
x+y=8,-3x+y=0
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\0\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}8\\0\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&1\\-3&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}8\\0\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}8\\0\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{1}{1-\left(-3\right)}\\-\frac{-3}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}8\\0\end{matrix}\right)
2\times 2 मेट्रिक्सको लागि \left(\begin{matrix}a&b\\c&d\end{matrix}\right), विपरित मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो जसले गर्दा मेट्रिक्स समीकरणलाई लाई मेट्रिक्सको गुणन समस्याको रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}8\\0\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 8\\\frac{3}{4}\times 8\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\6\end{matrix}\right)
हिसाब गर्नुहोस्।
x=2,y=6
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
y-3x=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 3x घटाउनुहोस्।
x+y=8,-3x+y=0
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
x+3x+y-y=8
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर x+y=8 बाट -3x+y=0 घटाउनुहोस्।
x+3x=8
-y मा y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै y र -y राशी रद्द हुन्छन्।
4x=8
3x मा x जोड्नुहोस्
x=2
दुबैतिर 4 ले भाग गर्नुहोस्।
-3\times 2+y=0
-3x+y=0 मा x लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
-6+y=0
-3 लाई 2 पटक गुणन गर्नुहोस्।
y=6
समीकरणको दुबैतिर 6 जोड्नुहोस्।
x=2,y=6
अब प्रणाली समाधान भएको छ।