मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x+y=780,x-y=975
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x+y=780
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=-y+780
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
-y+780-y=975
-y+780 लाई x ले अर्को समीकरण x-y=975 मा प्रतिस्थापन गर्नुहोस्।
-2y+780=975
-y मा -y जोड्नुहोस्
-2y=195
समीकरणको दुबैतिरबाट 780 घटाउनुहोस्।
y=-\frac{195}{2}
दुबैतिर -2 ले भाग गर्नुहोस्।
x=-\left(-\frac{195}{2}\right)+780
x=-y+780 मा y लाई -\frac{195}{2} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{195}{2}+780
-1 लाई -\frac{195}{2} पटक गुणन गर्नुहोस्।
x=\frac{1755}{2}
\frac{195}{2} मा 780 जोड्नुहोस्
x=\frac{1755}{2},y=-\frac{195}{2}
अब प्रणाली समाधान भएको छ।
x+y=780,x-y=975
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}780\\975\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}780\\975\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&1\\1&-1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}780\\975\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}780\\975\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}780\\975\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}780\\975\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 780+\frac{1}{2}\times 975\\\frac{1}{2}\times 780-\frac{1}{2}\times 975\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1755}{2}\\-\frac{195}{2}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{1755}{2},y=-\frac{195}{2}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x+y=780,x-y=975
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
x-x+y+y=780-975
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर x+y=780 बाट x-y=975 घटाउनुहोस्।
y+y=780-975
-x मा x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै x र -x राशी रद्द हुन्छन्।
2y=780-975
y मा y जोड्नुहोस्
2y=-195
-975 मा 780 जोड्नुहोस्
y=-\frac{195}{2}
दुबैतिर 2 ले भाग गर्नुहोस्।
x-\left(-\frac{195}{2}\right)=975
x-y=975 मा y लाई -\frac{195}{2} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x+\frac{195}{2}=975
-1 लाई -\frac{195}{2} पटक गुणन गर्नुहोस्।
x=\frac{1755}{2}
समीकरणको दुबैतिरबाट \frac{195}{2} घटाउनुहोस्।
x=\frac{1755}{2},y=-\frac{195}{2}
अब प्रणाली समाधान भएको छ।