मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x+y=69,7x+y=87
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x+y=69
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=-y+69
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
7\left(-y+69\right)+y=87
-y+69 लाई x ले अर्को समीकरण 7x+y=87 मा प्रतिस्थापन गर्नुहोस्।
-7y+483+y=87
7 लाई -y+69 पटक गुणन गर्नुहोस्।
-6y+483=87
y मा -7y जोड्नुहोस्
-6y=-396
समीकरणको दुबैतिरबाट 483 घटाउनुहोस्।
y=66
दुबैतिर -6 ले भाग गर्नुहोस्।
x=-66+69
x=-y+69 मा y लाई 66 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=3
-66 मा 69 जोड्नुहोस्
x=3,y=66
अब प्रणाली समाधान भएको छ।
x+y=69,7x+y=87
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&1\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}69\\87\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&1\\7&1\end{matrix}\right))\left(\begin{matrix}1&1\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\7&1\end{matrix}\right))\left(\begin{matrix}69\\87\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&1\\7&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\7&1\end{matrix}\right))\left(\begin{matrix}69\\87\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\7&1\end{matrix}\right))\left(\begin{matrix}69\\87\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-7}&-\frac{1}{1-7}\\-\frac{7}{1-7}&\frac{1}{1-7}\end{matrix}\right)\left(\begin{matrix}69\\87\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{1}{6}\\\frac{7}{6}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}69\\87\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\times 69+\frac{1}{6}\times 87\\\frac{7}{6}\times 69-\frac{1}{6}\times 87\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\66\end{matrix}\right)
हिसाब गर्नुहोस्।
x=3,y=66
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x+y=69,7x+y=87
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
x-7x+y-y=69-87
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर x+y=69 बाट 7x+y=87 घटाउनुहोस्।
x-7x=69-87
-y मा y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै y र -y राशी रद्द हुन्छन्।
-6x=69-87
-7x मा x जोड्नुहोस्
-6x=-18
-87 मा 69 जोड्नुहोस्
x=3
दुबैतिर -6 ले भाग गर्नुहोस्।
7\times 3+y=87
7x+y=87 मा x लाई 3 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
21+y=87
7 लाई 3 पटक गुणन गर्नुहोस्।
y=66
समीकरणको दुबैतिरबाट 21 घटाउनुहोस्।
x=3,y=66
अब प्रणाली समाधान भएको छ।