मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

y-3x=-2
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 3x घटाउनुहोस्।
x+y=-6,-3x+y=-2
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x+y=-6
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=-y-6
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
-3\left(-y-6\right)+y=-2
-y-6 लाई x ले अर्को समीकरण -3x+y=-2 मा प्रतिस्थापन गर्नुहोस्।
3y+18+y=-2
-3 लाई -y-6 पटक गुणन गर्नुहोस्।
4y+18=-2
y मा 3y जोड्नुहोस्
4y=-20
समीकरणको दुबैतिरबाट 18 घटाउनुहोस्।
y=-5
दुबैतिर 4 ले भाग गर्नुहोस्।
x=-\left(-5\right)-6
x=-y-6 मा y लाई -5 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=5-6
-1 लाई -5 पटक गुणन गर्नुहोस्।
x=-1
5 मा -6 जोड्नुहोस्
x=-1,y=-5
अब प्रणाली समाधान भएको छ।
y-3x=-2
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 3x घटाउनुहोस्।
x+y=-6,-3x+y=-2
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-2\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}-6\\-2\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&1\\-3&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}-6\\-2\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}-6\\-2\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{1}{1-\left(-3\right)}\\-\frac{-3}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-2\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-6\\-2\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-6\right)-\frac{1}{4}\left(-2\right)\\\frac{3}{4}\left(-6\right)+\frac{1}{4}\left(-2\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-5\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-1,y=-5
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
y-3x=-2
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 3x घटाउनुहोस्।
x+y=-6,-3x+y=-2
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
x+3x+y-y=-6+2
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर x+y=-6 बाट -3x+y=-2 घटाउनुहोस्।
x+3x=-6+2
-y मा y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै y र -y राशी रद्द हुन्छन्।
4x=-6+2
3x मा x जोड्नुहोस्
4x=-4
2 मा -6 जोड्नुहोस्
x=-1
दुबैतिर 4 ले भाग गर्नुहोस्।
-3\left(-1\right)+y=-2
-3x+y=-2 मा x लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
3+y=-2
-3 लाई -1 पटक गुणन गर्नुहोस्।
y=-5
समीकरणको दुबैतिरबाट 3 घटाउनुहोस्।
x=-1,y=-5
अब प्रणाली समाधान भएको छ।