x, y को लागि हल गर्नुहोस्
x=-2
y=3
ग्राफ
प्रश्नोत्तरी
Simultaneous Equation
\left. \begin{array} { l } { x + 2 y = 4 } \\ { y = 2 x + 7 } \end{array} \right.
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
y-2x=7
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2x घटाउनुहोस्।
x+2y=4,-2x+y=7
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x+2y=4
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=-2y+4
समीकरणको दुबैतिरबाट 2y घटाउनुहोस्।
-2\left(-2y+4\right)+y=7
-2y+4 लाई x ले अर्को समीकरण -2x+y=7 मा प्रतिस्थापन गर्नुहोस्।
4y-8+y=7
-2 लाई -2y+4 पटक गुणन गर्नुहोस्।
5y-8=7
y मा 4y जोड्नुहोस्
5y=15
समीकरणको दुबैतिर 8 जोड्नुहोस्।
y=3
दुबैतिर 5 ले भाग गर्नुहोस्।
x=-2\times 3+4
x=-2y+4 मा y लाई 3 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-6+4
-2 लाई 3 पटक गुणन गर्नुहोस्।
x=-2
-6 मा 4 जोड्नुहोस्
x=-2,y=3
अब प्रणाली समाधान भएको छ।
y-2x=7
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2x घटाउनुहोस्।
x+2y=4,-2x+y=7
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\7\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&2\\-2&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-2\right)}&-\frac{2}{1-2\left(-2\right)}\\-\frac{-2}{1-2\left(-2\right)}&\frac{1}{1-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&-\frac{2}{5}\\\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 4-\frac{2}{5}\times 7\\\frac{2}{5}\times 4+\frac{1}{5}\times 7\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\3\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-2,y=3
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
y-2x=7
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2x घटाउनुहोस्।
x+2y=4,-2x+y=7
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-2x-2\times 2y=-2\times 4,-2x+y=7
x र -2x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -2 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस्।
-2x-4y=-8,-2x+y=7
सरल गर्नुहोस्।
-2x+2x-4y-y=-8-7
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -2x-4y=-8 बाट -2x+y=7 घटाउनुहोस्।
-4y-y=-8-7
2x मा -2x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -2x र 2x राशी रद्द हुन्छन्।
-5y=-8-7
-y मा -4y जोड्नुहोस्
-5y=-15
-7 मा -8 जोड्नुहोस्
y=3
दुबैतिर -5 ले भाग गर्नुहोस्।
-2x+3=7
-2x+y=7 मा y लाई 3 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-2x=4
समीकरणको दुबैतिरबाट 3 घटाउनुहोस्।
x=-2
दुबैतिर -2 ले भाग गर्नुहोस्।
x=-2,y=3
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}