मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x+2y=16,2x+3y=17
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x+2y=16
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=-2y+16
समीकरणको दुबैतिरबाट 2y घटाउनुहोस्।
2\left(-2y+16\right)+3y=17
-2y+16 लाई x ले अर्को समीकरण 2x+3y=17 मा प्रतिस्थापन गर्नुहोस्।
-4y+32+3y=17
2 लाई -2y+16 पटक गुणन गर्नुहोस्।
-y+32=17
3y मा -4y जोड्नुहोस्
-y=-15
समीकरणको दुबैतिरबाट 32 घटाउनुहोस्।
y=15
दुबैतिर -1 ले भाग गर्नुहोस्।
x=-2\times 15+16
x=-2y+16 मा y लाई 15 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-30+16
-2 लाई 15 पटक गुणन गर्नुहोस्।
x=-14
-30 मा 16 जोड्नुहोस्
x=-14,y=15
अब प्रणाली समाधान भएको छ।
x+2y=16,2x+3y=17
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\17\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}16\\17\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&2\\2&3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}16\\17\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}16\\17\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2\times 2}&-\frac{2}{3-2\times 2}\\-\frac{2}{3-2\times 2}&\frac{1}{3-2\times 2}\end{matrix}\right)\left(\begin{matrix}16\\17\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&2\\2&-1\end{matrix}\right)\left(\begin{matrix}16\\17\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 16+2\times 17\\2\times 16-17\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\15\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-14,y=15
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x+2y=16,2x+3y=17
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2x+2\times 2y=2\times 16,2x+3y=17
x र 2x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस्।
2x+4y=32,2x+3y=17
सरल गर्नुहोस्।
2x-2x+4y-3y=32-17
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 2x+4y=32 बाट 2x+3y=17 घटाउनुहोस्।
4y-3y=32-17
-2x मा 2x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 2x र -2x राशी रद्द हुन्छन्।
y=32-17
-3y मा 4y जोड्नुहोस्
y=15
-17 मा 32 जोड्नुहोस्
2x+3\times 15=17
2x+3y=17 मा y लाई 15 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
2x+45=17
3 लाई 15 पटक गुणन गर्नुहोस्।
2x=-28
समीकरणको दुबैतिरबाट 45 घटाउनुहोस्।
x=-14
दुबैतिर 2 ले भाग गर्नुहोस्।
x=-14,y=15
अब प्रणाली समाधान भएको छ।