मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

y+\frac{3}{2}x=-2
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा \frac{3}{2}x थप्नुहोस्।
x+2y=-8,\frac{3}{2}x+y=-2
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x+2y=-8
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=-2y-8
समीकरणको दुबैतिरबाट 2y घटाउनुहोस्।
\frac{3}{2}\left(-2y-8\right)+y=-2
-2y-8 लाई x ले अर्को समीकरण \frac{3}{2}x+y=-2 मा प्रतिस्थापन गर्नुहोस्।
-3y-12+y=-2
\frac{3}{2} लाई -2y-8 पटक गुणन गर्नुहोस्।
-2y-12=-2
y मा -3y जोड्नुहोस्
-2y=10
समीकरणको दुबैतिर 12 जोड्नुहोस्।
y=-5
दुबैतिर -2 ले भाग गर्नुहोस्।
x=-2\left(-5\right)-8
x=-2y-8 मा y लाई -5 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=10-8
-2 लाई -5 पटक गुणन गर्नुहोस्।
x=2
10 मा -8 जोड्नुहोस्
x=2,y=-5
अब प्रणाली समाधान भएको छ।
y+\frac{3}{2}x=-2
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा \frac{3}{2}x थप्नुहोस्।
x+2y=-8,\frac{3}{2}x+y=-2
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\-2\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right))\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\times \frac{3}{2}}&-\frac{2}{1-2\times \frac{3}{2}}\\-\frac{\frac{3}{2}}{1-2\times \frac{3}{2}}&\frac{1}{1-2\times \frac{3}{2}}\end{matrix}\right)\left(\begin{matrix}-8\\-2\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&1\\\frac{3}{4}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-8\\-2\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-8\right)-2\\\frac{3}{4}\left(-8\right)-\frac{1}{2}\left(-2\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-5\end{matrix}\right)
हिसाब गर्नुहोस्।
x=2,y=-5
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
y+\frac{3}{2}x=-2
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा \frac{3}{2}x थप्नुहोस्।
x+2y=-8,\frac{3}{2}x+y=-2
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
\frac{3}{2}x+\frac{3}{2}\times 2y=\frac{3}{2}\left(-8\right),\frac{3}{2}x+y=-2
x र \frac{3x}{2} लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई \frac{3}{2} ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस्।
\frac{3}{2}x+3y=-12,\frac{3}{2}x+y=-2
सरल गर्नुहोस्।
\frac{3}{2}x-\frac{3}{2}x+3y-y=-12+2
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर \frac{3}{2}x+3y=-12 बाट \frac{3}{2}x+y=-2 घटाउनुहोस्।
3y-y=-12+2
-\frac{3x}{2} मा \frac{3x}{2} जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै \frac{3x}{2} र -\frac{3x}{2} राशी रद्द हुन्छन्।
2y=-12+2
-y मा 3y जोड्नुहोस्
2y=-10
2 मा -12 जोड्नुहोस्
y=-5
दुबैतिर 2 ले भाग गर्नुहोस्।
\frac{3}{2}x-5=-2
\frac{3}{2}x+y=-2 मा y लाई -5 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
\frac{3}{2}x=3
समीकरणको दुबैतिर 5 जोड्नुहोस्।
x=2
समीकरणको दुबैतिर \frac{3}{2} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=2,y=-5
अब प्रणाली समाधान भएको छ।